BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-12-2017, 12:48 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Rational Engineering of Photoconvertible Fluorescent Proteins for Dual-Color Fluorescence Nanoscopy Enabled by a Triplet-State Mechanism of Primed Conversion

Rational Engineering of Photoconvertible Fluorescent Proteins for Dual-Color Fluorescence Nanoscopy Enabled by a Triplet-State Mechanism of Primed Conversion


Green-to-red photoconvertible fluorescent proteins (pcFPs) are powerful tools for super-resolution localization microscopy and protein tagging. Recently, they have been found to undergo efficient photoconversion not only by the traditional 400-nm illumination but also by an alternative method termed primed conversion, employing dual wavelength illumination with blue and far-red/near-infrared light. Primed conversion has been reported only for Dendra2 and its mechanism has remained elusive. Here, we uncover the molecular mechanism of primed conversion by reporting the intermediate “primed” state to be a triplet dark state formed by intersystem crossing. We show that formation of this state can be influenced by the introduction of serine or threonine at sequence position 69 (Eos notation) and use this knowledge to create “pr”- (for primed convertible) variants of most known green-to-red pcFPs.Uncovering the mechanism of primed conversion allows for rational engineering of primed conversion capable (pr-) fluorescent proteins. An engineered pr-Eos and a wild-type Eos protein are combined for dual-color fluorescence nanoscopy using photoactivated localization microscopy.

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] A triplet state mechanism of primed conversion enables rational engineering of photoconvertible fluorescent proteins for dual color fluorescence nanoscopy
A triplet state mechanism of primed conversion enables rational engineering of photoconvertible fluorescent proteins for dual color fluorescence nanoscopy Photoconvertible fluorescent proteins (pcFPs) are powerful tools for super-resolution localization microscopy and protein tagging. Recently, they have been found to undergo efficient photoconversion by an alternative method termed primed conversion, employing dual wavelength illumination with blue and far-red/near-infrared light. Primed conversion has been reported only for Dendra2 and its mechanism has remained elusive. Here, we...
nmrlearner Journal club 0 06-30-2017 05:34 AM
[NMR paper] A general mechanism of photoconversion of green-to-red fluorescent proteins based on blue and infrared light reduces phototoxicity in live-cell single-molecule imaging
A general mechanism of photoconversion of green-to-red fluorescent proteins based on blue and infrared light reduces phototoxicity in live-cell single-molecule imaging Photoconversion of fluorescent proteins by blue and complementary near-infrared light, termed primed conversion (PC), is a mechanism recently discovered for Dendra2. We demonstrate that controlling the conformation of arginine at residue 66 by threonine at residue 69 of fluorescent proteins from Anthozoan families (Dendra2, mMaple, Eos, mKikGR, pcDronpa protein families) represents a general route to facilitate PC....
nmrlearner Journal club 0 06-02-2017 08:33 PM
Structural Determinants of Improved Fluorescence ina Family of Bacteriophytochrome-Based Infrared Fluorescent Proteins:Insights from Continuum Electrostatic Calculations and Molecular DynamicsSimulations
Structural Determinants of Improved Fluorescence ina Family of Bacteriophytochrome-Based Infrared Fluorescent Proteins:Insights from Continuum Electrostatic Calculations and Molecular DynamicsSimulations http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00295/20160729/images/medium/bi-2016-00295b_0009.gif Biochemistry DOI: 10.1021/acs.biochem.6b00295 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/tK0C2sEP34U More...
nmrlearner Journal club 0 07-30-2016 04:57 AM
[NMR paper] Bioconjugation of proteins with a paramagnetic NMR and fluorescent tag.
Bioconjugation of proteins with a paramagnetic NMR and fluorescent tag. Related Articles Bioconjugation of proteins with a paramagnetic NMR and fluorescent tag. Chemistry. 2013 Dec 9;19(50):17141-9 Authors: Huang F, Pei YY, Zuo HH, Chen JL, Yang Y, Su XC Abstract Site-specific labeling of proteins with lanthanide ions offers great opportunities for investigating the structure, function, and dynamics of proteins by virtue of the unique properties of lanthanides. Lanthanide-tagged proteins can be studied by NMR, X-ray, fluorescence, and EPR...
nmrlearner Journal club 0 12-07-2013 01:00 PM
Scientists move toward rational design of artificial proteins - R & D Magazine
Scientists move toward rational design of artificial proteins - R & D Magazine <img alt="" height="1" width="1" /> Scientists move toward rational design of artificial proteins R & D Magazine Less vulnerable to chemical or metabolic breakdown than proteins, peptoids are promising for diagnostics, pharmaceuticals, and as a platform to build bioinspired nanomaterials, as scientists can build and manipulate peptoids with great precision. But ... Read here
nmrlearner Online News 0 08-23-2012 03:46 AM
[NMR900 blog] Solid-State NMR in Materials for Energy Storage and Conversion
Solid-State NMR in Materials for Energy Storage and Conversion A special issue of Solid State Nuclear Magnetic Resonance guest-edited by Clare Grey (Cambridge) and Gillian Goward (McMaster), Volume 42, Pages 1-98 (April 2012) http://www.sciencedirect.com/science/journal/09262040/42 Editorial Clare P. Grey, Gillian R. Goward, Editorial "Solid-State NMR in Materials for Energy Storage and Conversion," Solid State Nuclear Magnetic Resonance 42 (2012) 1. http://dx.doi.org/10.1016/j.ssnmr.2012.03.001 Canadian contributions
nmrlearner News from NMR blogs 0 03-21-2012 11:40 PM
Systematic Study of Protein Detection Mechanism of Self-Assembling 19F NMR/MRI Nanoprobes toward Rational Design and Improved Sensitivity
Systematic Study of Protein Detection Mechanism of Self-Assembling 19F NMR/MRI Nanoprobes toward Rational Design and Improved Sensitivity Yousuke Takaoka, Keishi Kiminami, Keigo Mizusawa, Kazuya Matsuo, Michiko Narazaki, Tetsuya Matsuda and Itaru Hamachi http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203996c/aop/images/medium/ja-2011-03996c_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja203996c http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/fqTSjFalrGg
nmrlearner Journal club 0 07-12-2011 08:16 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:17 PM.


Map