Related ArticlesRapid protein fold determination using unassigned NMR data.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15404-9
Authors: Meiler J, Baker D
Experimental structure determination by x-ray crystallography and NMR spectroscopy is slow and time-consuming compared with the rate at which new protein sequences are being identified. NMR spectroscopy has the advantage of rapidly providing the structurally relevant information in the form of unassigned chemical shifts (CSs), intensities of NOESY crosspeaks [nuclear Overhauser effects (NOEs)], and residual dipolar couplings (RDCs), but use of these data are limited by the time and effort needed to assign individual resonances to specific atoms. Here, we develop a method for generating low-resolution protein structures by using unassigned NMR data that relies on the de novo protein structure prediction algorithm, rosetta [Simons, K. T., Kooperberg, C., Huang, E. & Baker, D. (1997) J. Mol. Biol. 268, 209-225] and a Monte Carlo procedure that searches for the assignment of resonances to atoms that produces the best fit of the experimental NMR data to a candidate 3D structure. A large ensemble of models is generated from sequence information alone by using rosetta, an optimal assignment is identified for each model, and the models are then ranked based on their fit with the NMR data assuming the identified assignments. The method was tested on nine protein sequences between 56 and 140 amino acids and published CS, NOE, and RDC data. The procedure yielded models with rms deviations between 3 and 6 A, and, in four of the nine cases, the partial assignments obtained by the method could be used to refine the structures to high resolution (0.6-1.8 A) by repeated cycles of structure generation guided by the partial assignments, followed by reassignment using the newly generated models.
Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins
Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins
Abstract It has been demonstrated that protein folds can be determined using appropriate computational protocols with NMR chemical shifts as the sole source of experimental restraints. While such approaches are very promising they still suffer from low convergence resulting in long computation times to achieve accurate results. Here we present a suite of time- and sensitivity optimized NMR experiments for rapid measurement of up to six RDCs per residue. Including such an RDC data set, measured in less...
nmrlearner
Journal club
0
09-17-2011 10:20 AM
Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements.
Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements.
Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements.
J Struct Biol. 2011 Apr 9;
Authors: Kodama Y, Reese ML, Shimba N, Ono K, Kanamori E, Dötsch V, Noguchi S, Fukunishi Y, Suzuki EI, Shimada I, Takahashi H
Protein-protein interactions are necessary for various cellular...
nmrlearner
Journal club
0
04-20-2011 07:15 PM
[NMR paper] High-throughput inference of protein-protein interfaces from unassigned NMR data.
High-throughput inference of protein-protein interfaces from unassigned NMR data.
Related Articles High-throughput inference of protein-protein interfaces from unassigned NMR data.
Bioinformatics. 2005 Jun;21 Suppl 1:i292-301
Authors: Mettu RR, Lilien RH, Donald BR
SUMMARY: We cast the problem of identifying protein-protein interfaces, using only unassigned NMR spectra, into a geometric clustering problem. Identifying protein-protein interfaces is critical to understanding inter- and intra-cellular communication, and NMR allows the study of...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] The fumarate sensor DcuS: progress in rapid protein fold elucidation by combining pro
The fumarate sensor DcuS: progress in rapid protein fold elucidation by combining protein structure prediction methods with NMR spectroscopy.
Related Articles The fumarate sensor DcuS: progress in rapid protein fold elucidation by combining protein structure prediction methods with NMR spectroscopy.
J Magn Reson. 2005 Apr;173(2):310-6
Authors: Meiler J, Baker D
We illustrate how moderate resolution protein structures can be rapidly obtained by interlinking computational prediction methodologies with un- or partially assigned NMR data. To...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Rapid assessment of protein structural stability and fold validation via NMR.
Rapid assessment of protein structural stability and fold validation via NMR.
Related Articles Rapid assessment of protein structural stability and fold validation via NMR.
Methods Enzymol. 2005;394:142-75
Authors: Hoffmann B, Eichmüller C, Steinhauser O, Konrat R
In structural proteomics, it is necessary to efficiently screen in a high-throughput manner for the presence of stable structures in proteins that can be subjected to subsequent structure determination by X-ray or NMR spectroscopy. Here we illustrate that the (1)H chemical...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] Automated protein fold determination using a minimal NMR constraint strategy.
Automated protein fold determination using a minimal NMR constraint strategy.
Related Articles Automated protein fold determination using a minimal NMR constraint strategy.
Protein Sci. 2003 Jun;12(6):1232-46
Authors: Zheng D, Huang YJ, Moseley HN, Xiao R, Aramini J, Swapna GV, Montelione GT
Determination of precise and accurate protein structures by NMR generally requires weeks or even months to acquire and interpret all the necessary NMR data. However, even medium-accuracy fold information can often provide key clues about protein evolution...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
CABS-NMR-De novo tool for rapid global fold determination from chemical shifts, resid
CABS-NMR-De novo tool for rapid global fold determination from chemical shifts, residual dipolar couplings and sparse methyl-methyl noes.
CABS-NMR-De novo tool for rapid global fold determination from chemical shifts, residual dipolar couplings and sparse methyl-methyl noes.
J Comput Chem. 2010 Aug 30;
Authors: Latek D, Kolinski A
Recent development of nuclear magnetic resonance (NMR) techniques provided new types of structural restraints that can be successfully used in fast and low-cost global protein fold determination. Here, we present...
nmrlearner
Journal club
0
09-02-2010 03:58 PM
[NMR paper] An approach to global fold determination using limited NMR data from larger proteins
An approach to global fold determination using limited NMR data from larger proteins selectively protonated at specific residue types.
An approach to global fold determination using limited NMR data from larger proteins selectively protonated at specific residue types.
J Biomol NMR. 1996 Oct;8(3):360-8
Authors: Smith BO, Ito Y, Raine A, Teichmann S, Ben-Tovim L, Nietlispach D, Broadhurst RW, Terada T, Kelly M, Oschkinat H, Shibata T, Yokoyama S, Laue ED
A combination of calculation and experiment is used to demonstrate that the global fold of...