Related ArticlesRapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data.
Angew Chem Int Ed Engl. 2016 Jan 28;
Authors: Gu Y, Hansen AL, Peng Y, Brüschweiler R
Abstract
Functional motions of (15) N-labeled proteins can be monitored by solution NMR spin relaxation experiments over a broad range of timescales. These experiments however typically take of the order of several days to a week per protein. Recently, NMR chemical exchange saturation transfer (CEST) experiments have emerged to probe slow millisecond motions complementing R1? and CPMG-type experiments. CEST also simultaneously reports on site-specific R1 and R2 parameters. It is shown here how CEST-derived R1 and R2 relaxation parameters can be measured within a few hours at an accuracy comparable to traditional relaxation experiments. Using a "lean" version of the model-free approach S(2) order parameters can be determined that match those from the standard model-free approach applied to (15) N R1 , R2 , and {(1) H}-(15) N NOE data. The new methodology, which is demonstrated for ubiquitin and arginine kinase (42 kDa), should serve as an effective screening tool of protein dynamics from picosecond-to-millisecond timescales.
PMID: 26821600 [PubMed - as supplied by publisher]
Speeding-up exchange-mediated saturation transfer experiments by Fourier transform
Speeding-up exchange-mediated saturation transfer experiments by Fourier transform
Abstract
Protein motions over various time scales are crucial for protein function. NMR relaxation dispersion experiments play a key role in explaining these motions. However, the study of slow conformational changes with lowly populated states remained elusive. The recently developed exchange-mediated saturation transfer experiments allow the detection and characterization of such motions, but require extensive measurement time. Here we show that, by making use of...
nmrlearner
Journal club
0
09-10-2015 01:10 AM
[NMR paper] Transfer Rate Edited Experiment for the Selective Detection of Chemical Exchange via Saturaion Transfer (TRE-CEST)
Transfer Rate Edited Experiment for the Selective Detection of Chemical Exchange via Saturaion Transfer (TRE-CEST)
Publication date: Available online 7 May 2015
Source:Journal of Magnetic Resonance</br>
Author(s): Joshua I. Friedman , Ding Xia , Ravinder R. Regatte , Alexej Jerschow</br>
Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange...
[NMR paper] Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Angew Chem Int Ed Engl. 2013 Feb 28;
Authors: Vallurupalli P, Kay LE
Abstract
Seeing the invisible: A 13 CO NMR chemical exchange saturation transfer (CEST) experiment for the study of "invisible" excited protein states with lifetimes on the order of 5-50 ms has been developed. The 13 CO chemical...
nmrlearner
Journal club
0
03-02-2013 11:45 AM
[U. of Ottawa NMR Facility Blog] Saturation Transfer and Exchange
Saturation Transfer and Exchange
Exchange processes that occur on the NMR time scale affect the NMR line shapes and can be studied by line shape analysis. If the exchange process is slow on the NMR time scale, one can employ EXSY or inversion transfer methods to study the exchange. An alternative to these is the saturation transfer technique. In this method, one of the slowly exchanging resonances (A) is saturated with low power CW irradiation and the effect on the intensity of the resonance of the exchange partner (B) is monitored. If there is exchange between A and B during the period of...
nmrlearner
News from NMR blogs
0
08-03-2011 01:00 AM
[NMR paper] Rapid protein fold determination using unassigned NMR data.
Rapid protein fold determination using unassigned NMR data.
Related Articles Rapid protein fold determination using unassigned NMR data.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15404-9
Authors: Meiler J, Baker D
Experimental structure determination by x-ray crystallography and NMR spectroscopy is slow and time-consuming compared with the rate at which new protein sequences are being identified. NMR spectroscopy has the advantage of rapidly providing the structurally relevant information in the form of unassigned chemical shifts (CSs),...