Abstract Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical shifts and sequence correction factors determined for a GGXGG peptide series following the approach of Schwarzinger et al. (J Am Chem Soc 123(13):2970â??2978, 2001). The chemical shifts are determined at neutral pH in order to match the conditions of most studies of intrinsically disordered proteins. Temperature has a non-negligible effect on the 13C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary structure in disordered proteins.
Content Type Journal Article
Pages 1-11
DOI 10.1007/s10858-011-9472-x
Authors
Magnus Kjaergaard, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark
Søren Brander, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark
Flemming M. Poulsen, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark
RCI - Random Coil Index for predicting protein flexibility from chemical shifts
RCI website
RCI method predicts protein flexibility by calculating the Random Coil Index from backbone chemical shifts and predicting values of model-free order parameters as well as per-residue RMSF of NMR and MD ensembles from the Random Coil Index.
The key advantages of this protocol over existing methods of studying protein flexibility are (i) it does not require prior knowledge of a protein's tertiary structure, (ii) it is not sensitive to the protein's overall tumbling and (iii) it does not require additional NMR measurements beyond the standard experiments for backbone...
markber
NMR software
0
02-02-2012 11:36 PM
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Abstract We report enhanced sensitivity NMR measurements of intrinsically disordered proteins in the presence of paramagnetic relaxation enhancement (PRE) agents such as Ni2+-chelated DO2A. In proton-detected 1H-15N SOFAST-HMQC and carbon-detected (H-flip)13CO-15N experiments, faster longitudinal relaxation enables the usage of even shorter interscan delays. This results in higher NMR signal intensities per units of experimental time, without adverse line...
nmrlearner
Journal club
0
10-21-2011 10:04 PM
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
J Biol Chem. 2011 Apr 20;
Authors: Iwasa H, Meshitsuka S, Hongo K, Mizobata T, Kawata Y
Co-chaperonin GroES from E. coli works with chaperonin GroEL to mediate the folding reactions of various proteins. However, under specific conditions, i. e., the...
nmrlearner
Journal club
0
04-22-2011 02:00 PM
ncIDP-assign: A SPARKY extension for the effective NMR assignment of intrinsically disordered proteins.
ncIDP-assign: A SPARKY extension for the effective NMR assignment of intrinsically disordered proteins.
ncIDP-assign: A SPARKY extension for the effective NMR assignment of intrinsically disordered proteins.
Bioinformatics. 2011 Mar 3;
Authors: Tamiola K, Mulder FA
SUMMARY: We describe here the ncIDP-assign extension for the popular NMR assignment programme SPARKY, which aids in the sequence-specific resonance assignment of intrinsically disordered proteins (IDPs). The assignment plugin greatly facilitates the effective matching of a set of...
nmrlearner
Journal club
0
03-05-2011 01:02 PM
Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins
Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins
Abstract Extensive resonance overlap exacerbates assignment of intrinsically disordered proteins (IDPs). This issue can be circumvented by utilizing 15N, 13C� and 1HN spins, where the chemical shift dispersion is mainly dictated by the characteristics of consecutive amino acid residues. Especially 15N and 13C� spins offer superior chemical shift dispersion in comparison to 13Cα and 13Cβ spins. However, HN-detected experiments...
nmrlearner
Journal club
0
01-29-2011 05:31 AM
[NMR paper] Proline-directed random-coil chemical shift values as a tool for the NMR assignment o
Proline-directed random-coil chemical shift values as a tool for the NMR assignment of the tau phosphorylation sites.
Related Articles Proline-directed random-coil chemical shift values as a tool for the NMR assignment of the tau phosphorylation sites.
Chembiochem. 2004 Jan 3;5(1):73-8
Authors: Lippens G, Wieruszeski JM, Leroy A, Smet C, Sillen A, Buée L, Landrieu I
NMR spectroscopy of the full-length neuronal Tau protein has proved to be difficult due to the length of the protein and the unfavorable amino acid composition. We show that the...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] Sequence-dependent correction of random coil NMR chemical shifts.
Sequence-dependent correction of random coil NMR chemical shifts.
Related Articles Sequence-dependent correction of random coil NMR chemical shifts.
J Am Chem Soc. 2001 Apr 4;123(13):2970-8
Authors: Schwarzinger S, Kroon GJ, Foss TR, Chung J, Wright PE, Dyson HJ
Random coil chemical shifts are commonly used to detect secondary structure elements in proteins in chemical shift index calculations. While this technique is very reliable for folded proteins, application to unfolded proteins reveals significant deviations from measured random coil...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
Chemical shift prediction in random coil peptides
Please check this program and let me know if it does work for your random coil peptides.
http://bloch.anu.edu.au/cgi-bin/shiftpred/shiftpred.cgi
Thank you,
Bogdan Bancia
bbancia@yahoo.com