Related ArticlesQuantitative Quantum Mechanical Spectral Analysis (qQMSA) of (1)H NMR spectra of complex mixtures and biofluids.
J Magn Reson. 2014 Feb 18;242C:67-78
Authors: Tiainen M, Soininen P, Laatikainen R
Abstract
The quantitative interpretation of (1)H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing, protein interactions, relaxation differences of the species, experimental artifacts and, furthermore, the spectra may contain unknown components and macromolecular background which cannot be easily separated from baseline. In this work, tools and strategies for quantitative Quantum Mechanical Spectral Analysis (qQMSA) of (1)H NMR spectra from complex mixtures were developed and systematically assessed. In the present approach, the signals of well-defined, stoichiometric components are described by a QM model, while the background is described by a multiterm baseline function and the unknown signals using optimizable and adjustable lines, regular multiplets or any spectral structures which can be composed from spectral lines. Any prior knowledge available from the spectrum can also be added to the model. Fitting strategies for weak and strongly overlapping spectral systems were developed and assessed using two basic model systems, the metabolite mixtures without and with macromolecular (serum) background. The analyses show that if the spectra are measured in high-throughput manner, the consistent absolute quantification demands some calibration to compensate the different response factors of the protons and compounds. On the other hand, the results show that also the T2-edited spectra can be measured so that they obey well the QM rules. In general, qQMSA exploits and interprets the spectral information in maximal way taking full advantage from the QM properties of the spectra and, at the same time, offers chemical confidence which means that individual components can be identified with high confidence on the basis of their accurate spectral parameters.
PMID: 24607824 [PubMed - as supplied by publisher]
[NMR paper] Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR Spectra of Complex Mixtures and Biofluids
Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR Spectra of Complex Mixtures and Biofluids
Publication date: Available online 18 February 2014
Source:Journal of Magnetic Resonance</br>
Author(s): Mika Tiainen , Pasi Soininen , Reino Laatikainen</br>
The quantitative interpretation of 1H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing, protein interactions, relaxation differences of the species, experimental artifacts and,...
[NMR thesis] I. Quantum-mechanical chemical exchange. II. NMR of semiconductors
I. Quantum-mechanical chemical exchange. II. NMR of semiconductors
Kurur, Narayanan Damodaran (1992) I. Quantum-mechanical chemical exchange. II. NMR of semiconductors. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechTHESIS:09022011-090934651
More...
nmrlearner
NMR theses
0
09-02-2011 07:31 PM
Ultrafast quantitative 2D NMR: an efficient tool for the measurement of specific isotopic enrichments in complex biological mixtures.
Ultrafast quantitative 2D NMR: an efficient tool for the measurement of specific isotopic enrichments in complex biological mixtures.
Ultrafast quantitative 2D NMR: an efficient tool for the measurement of specific isotopic enrichments in complex biological mixtures.
Anal Chem. 2011 Apr 15;83(8):3112-9
Authors: Giraudeau P, Massou S, Robin Y, Cahoreau E, Portais JC, Akoka S
Two-dimensional nuclear magnetic resonance (2D NMR) is a promising tool for studying metabolic fluxes by measuring (13)C-enrichments in complex mixtures of (13)C-labeled...
nmrlearner
Journal club
0
08-04-2011 11:41 AM
Analysis of complex mixtures using high-resolution nuclear magnetic resonance spectroscopy and chemometrics
Analysis of complex mixtures using high-resolution nuclear magnetic resonance spectroscopy and chemometrics
Publication year: 2011
Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 12 May 2011</br>
James S., McKenzie , James A., Donarski , Julie C., Wilson , Adrian J., Charlton</br>
*Highlights:*? Analysis of complex mixtures using NMR spectroscopy. ? Use of chemometrics for interpretation of spectra. ? Review of sample handling approaches. ? Discussion of spectral processing methods. ? Discussion of supervised and...