BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-25-2010, 02:04 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A quantitative NMR spectroscopic examination of the flexibility of the C-terminal ext

A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, alphaA- and alphaB-crystallin.

Related Articles A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, alphaA- and alphaB-crystallin.

Exp Eye Res. 2010 Aug 20;

Authors: Treweek TM, Rekas A, Walker MJ, Carver JA

The principal lens proteins alphaA- and alphaB-crystallin are members of the small heat-shock protein (sHsp) family of molecular chaperone proteins. Via their chaperone action, alphaA- and alphaB-crystallin play an important role in maintaining lens transparency by preventing crystallin protein aggregation and precipitation. alphaB-crystallin is found extensively extralenticularly where it is stress inducible and acts as a chaperone to facilitate general protein stabilization. The structure of either alphaA- or alphaB-crystallin is not known nor is the mechanism of their chaperone action. Our earlier (1)H NMR spectroscopic studies determined that mammalian sHsps have a highly dynamic, polar and unstructured region at their extreme C-terminus (summarized in Carver, J.A.(1999) Prog. Ret. Eye Res. 18, 431). This C-terminal extension acts as a solubilizing agent for the relatively hydrophobic protein and the complex it makes with its target proteins during chaperone action. In this study, alphaA- and alphaB-crystallin were (15)N-labelled and their (1)H-(15)N through-bond correlation, heteronuclear single-quantum coherence (HSQC) NMR spectra were assigned via standard methods. (1)H-(15)N spin-lattice (T(1)) and spin-spin (T(2)) relaxation times were measured for alphaA- and alphaB-crystallin in the absence and presence of a bound target protein, reduced alpha-lactalbumin. (1)H-(15)N Nuclear Overhauser Effect (NOE) values provide an accurate measure, on a residue-by-residue basis, of the backbone flexibility of polypeptides. From measurement of these NOE values, it was determined that the flexibility of the extension in alphaA- and alphaB-crystallin increased markedly at the extreme C-terminus. By contrast, upon chaperone interaction of alphaA-crystallin with reduced alpha-lactalbumin, flexibility was maintained in the extension but was distributed evenly across all residues in the extension. Two mutants of alphaB-crystallin in its C-terminal extension: (i) I159A and I161A and (ii) K175L, have altered chaperone ability (Treweek et al. (2007) PLoS One 2, e1046). Comparison of (1)H-(15)N NOE values for these mutants with wild type alphaB-crystallin revealed alteration in flexibility of the extension, particularly at the extremity of K175L alphaB-crystallin, which may affect chaperone ability.

PMID: 20732317 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR tweet] Biophysical examination of proteins by nuclear magnetic resonance:Atomic structures of macromolecules in solution
Biophysical examination of proteins by nuclear magnetic resonance:Atomic structures of macromolecules in solution Published by Theanphropy (James-N LEE-ANGEL) on 2011-12-24T00:17:57Z Source: Twitter
nmrlearner Twitter NMR 0 12-24-2011 12:27 AM
Solid-state NMR spectroscopic investigation of A? protofibrils: implication of a ?-sheet remodeling upon maturation into terminal amyloid fibrils.
Solid-state NMR spectroscopic investigation of A? protofibrils: implication of a ?-sheet remodeling upon maturation into terminal amyloid fibrils. Solid-state NMR spectroscopic investigation of A? protofibrils: implication of a ?-sheet remodeling upon maturation into terminal amyloid fibrils. Angew Chem Int Ed Engl. 2011 Mar 14;50(12):2837-40 Authors: Scheidt HA, Morgado I, Rothemund S, Huster D, Fändrich M
nmrlearner Journal club 0 07-02-2011 04:03 PM
NMR Provides a Quantitative Description of Protein Conformational Flexibility on Physiologically Important Timescales.
NMR Provides a Quantitative Description of Protein Conformational Flexibility on Physiologically Important Timescales. NMR Provides a Quantitative Description of Protein Conformational Flexibility on Physiologically Important Timescales. Biochemistry. 2011 Mar 9; Authors: Salmon L, Bouvignies G, Markwick PR, Blackledge M A complete description of biomolecular activity requires an understanding of the nature and the role of protein conformational dynamics. In recent years novel NMR-based techniques have emerged that provide hitherto inaccessible...
nmrlearner Journal club 0 03-11-2011 03:14 PM
Molecular-Level Examination of Cu2+ Binding Structure for Amyloid Fibrils of 40-Residue Alzheimer’s ? by Solid-State NMR Spectroscopy
Molecular-Level Examination of Cu2+ Binding Structure for Amyloid Fibrils of 40-Residue Alzheimer’s ? by Solid-State NMR Spectroscopy Sudhakar Parthasarathy, Fei Long, Yifat Miller, Yiling Xiao, Dan McElheny, Kent Thurber, Buyong Ma, Ruth Nussinov and Yoshitaka Ishii http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1072178/aop/images/medium/ja-2010-072178_0006.gif Journal of the American Chemical Society DOI: 10.1021/ja1072178 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA ...
nmrlearner Journal club 0 02-22-2011 11:06 PM
[NMR paper] The structure of apo-calmodulin. A 1H NMR examination of the carboxy-terminal domain.
The structure of apo-calmodulin. A 1H NMR examination of the carboxy-terminal domain. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The structure of apo-calmodulin. A 1H NMR examination of the carboxy-terminal domain. FEBS Lett. 1993 Dec 27;336(2):368-74 Authors: Finn BE, Drakenberg T, Forsén S The structure of the carboxy-terminal domain of bovine calmodulin, TR2C, in the calcium-free form was investigated using two-dimensional 1H NMR. Sequential resonance...
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR paper] 31P NMR examination of phosphorus metabolites in the aqueous, acidic, and organic ext
31P NMR examination of phosphorus metabolites in the aqueous, acidic, and organic extracts of Phaseolus vulgaris seeds. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles 31P NMR examination of phosphorus metabolites in the aqueous, acidic, and organic extracts of Phaseolus vulgaris seeds. Anal Biochem. 1993 Feb 15;209(1):85-94 Authors: Crans DC, Mikus M, Marshman RW 31P NMR spectroscopy was used to compare the phosphorus compound content in aqueous, acidic, and organic...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] Examination of elongation factor Tu for aluminum fluoride binding sites using fluores
Examination of elongation factor Tu for aluminum fluoride binding sites using fluorescence and 19F-NMR methodologies. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Examination of elongation factor Tu for aluminum fluoride binding sites using fluorescence and 19F-NMR methodologies. FEBS Lett. 1991 Jan 28;278(2):225-8 Authors: Hazlett TL, Higashijima T, Jameson DM This article reports on a comparison of the interaction of Al3+ and F- with two GTP-binding proteins,...
nmrlearner Journal club 0 08-21-2010 11:16 PM
Protein flexibility and rigidity predicted from se
Protein flexibility and rigidity predicted from sequence http://cubic.bioc.columbia.edu/papers/2005_bvalue/paper.html
nmrlearner A test forum 0 05-07-2005 07:04 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:18 PM.


Map