BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-15-2024, 04:20 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,603
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Quantitative Characterization of Chain-Flipping of Acyl Carrier Protein of Escherichia coli Using Chemical Exchange NMR

Quantitative Characterization of Chain-Flipping of Acyl Carrier Protein of Escherichia coli Using Chemical Exchange NMR

The acyl carrier protein of Escherichia coli, termed AcpP, is a prototypical example of type II fatty acid synthase systems found in many bacteria. It serves as a central hub by accepting diverse acyl moieties (4-18 carbons) and shuttling them between its multiple enzymatic partners to generate fatty acids. Prior structures of acyl-AcpPs established that thioester-linked acyl cargos are sequestered within AcpP's hydrophobic lumen. In contrast, structures of enzyme-bound acyl-AcpPs showed...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[ASAP] Amino Acid Selective 13C Labeling and 13C Scrambling Profile Analysis of Protein a and Side-Chain Carbons in Escherichia coli Utilized for Protein Nuclear Magnetic Resonance
Amino Acid Selective 13C Labeling and 13C Scrambling Profile Analysis of Protein a and Side-Chain Carbons in Escherichia coli Utilized for Protein Nuclear Magnetic Resonance https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.8b00182/20180620/images/medium/bi-2018-00182j_0008.gif Biochemistry DOI: 10.1021/acs.biochem.8b00182 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/fkm85ucmPjs More...
nmrlearner Journal club 0 06-21-2018 09:01 AM
Acyl Carrier Protein Cyanylation Delivers a KetoacylSynthase–Carrier Protein Cross-Link
Acyl Carrier Protein Cyanylation Delivers a KetoacylSynthase–Carrier Protein Cross-Link http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.7b00219/20170508/images/medium/bi-2017-00219v_0003.gif Biochemistry DOI: 10.1021/acs.biochem.7b00219 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/At3bkgocnak More...
nmrlearner Journal club 0 05-09-2017 12:37 AM
?-Hydroxyacyl-acyl Carrier Protein Dehydratase(FabZ) from Francisella tularensis and Yersinia pestis: Structure Determination, Enzymatic Characterization, and Cross-InhibitionStudies
?-Hydroxyacyl-acyl Carrier Protein Dehydratase(FabZ) from Francisella tularensis and Yersinia pestis: Structure Determination, Enzymatic Characterization, and Cross-InhibitionStudies http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.5b00832/20160209/images/medium/bi-2015-00832x_0011.gif Biochemistry DOI: 10.1021/acs.biochem.5b00832 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/oG_5lGFlSWI More...
nmrlearner Journal club 0 02-10-2016 08:05 AM
Long-chain flavodoxin FldB from Escherichia coli
Long-chain flavodoxin FldB from Escherichia coli Source: Journal of Biomolecular NMR
nmrlearner Journal club 0 11-11-2014 11:57 AM
[NMR paper] The H/D-exchange Kinetics of the Escherichia coli Co-chaperonin GroES Studied by 2D-NMR and DMSO-Quenched Exchange Methods.
The H/D-exchange Kinetics of the Escherichia coli Co-chaperonin GroES Studied by 2D-NMR and DMSO-Quenched Exchange Methods. Related Articles The H/D-exchange Kinetics of the Escherichia coli Co-chaperonin GroES Studied by 2D-NMR and DMSO-Quenched Exchange Methods. J Mol Biol. 2013 Apr 11; Authors: Chandak MS, Nakamura T, Makabe K, Takenaka T, Mukaiyama A, Chaudhuri TK, Kato K, Kuwajima K Abstract We studied hydrogen/deuterium-exchange reactions of peptide amide protons of GroES using two different techniques: (1) two-dimensional (1)H-(15)N...
nmrlearner Journal club 0 04-16-2013 07:46 PM
NMR structure of an acyl-carrier protein from Borrelia burgdorferi.
NMR structure of an acyl-carrier protein from Borrelia burgdorferi. NMR structure of an acyl-carrier protein from Borrelia burgdorferi. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Sep 1;67(Pt 9):1137-40 Authors: Barnwal RP, Van Voorhis WC, Varani G Abstract Nearly complete resonance assignment and the high-resolution NMR structure of the acyl-carrier protein from Borrelia burgdorferi, a target of the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure-determination pipeline, are reported. This protein...
nmrlearner Journal club 0 09-10-2011 06:51 PM
[NMR paper] NMR characterization of the Escherichia coli nitrogen regulatory protein IIANtr in so
NMR characterization of the Escherichia coli nitrogen regulatory protein IIANtr in solution and interaction with its partner protein, NPr. Related Articles NMR characterization of the Escherichia coli nitrogen regulatory protein IIANtr in solution and interaction with its partner protein, NPr. Protein Sci. 2005 Apr;14(4):1082-90 Authors: Wang G, Peterkofsky A, Keifer PA, Li X The solution form of IIA(Ntr) from Escherichia coli and its interaction with its partner protein, NPr, were characterized by nuclear magnetic resonance (NMR)...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Refinement of the NMR structures for acyl carrier protein with scalar coupling data.
Refinement of the NMR structures for acyl carrier protein with scalar coupling data. Related Articles Refinement of the NMR structures for acyl carrier protein with scalar coupling data. Proteins. 1990;8(4):377-85 Authors: Kim Y, Prestegard JH Structure determination of small proteins using NMR data is most commonly pursued by combining NOE derived distance constraints with inherent constraints based on chemical bonding. Ideally, one would make use of a variety of experimental observations, not just distance constraints. Here, coupling...
nmrlearner Journal club 0 08-21-2010 10:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:37 PM.


Map