Quantitative analysis of the slow exchange process by 19F NMR in the presence of scalar and dipolar couplings: applications to the ribose 2â?²-19F probe in nucleic acids
Quantitative analysis of the slow exchange process by 19F NMR in the presence of scalar and dipolar couplings: applications to the ribose 2â?²-19F probe in nucleic acids
Solution NMR spectroscopy is a particularly powerful technique for characterizing the functional dynamics of biomolecules, which is typically achieved through the quantitative characterization of chemical exchange processes via the measurement of spin relaxation rates. In addition to the conventional nuclei such as 15N and 13C, which are abundant in biomolecules, fluorine-19 (19F) has recently garnered attention and is being widely used as a site-specific spin probe. While 19F offers the advantages of high sensitivity and low background, it can be susceptible to artifacts in quantitative relaxation analyses due to a multitude of dipolar and scalar coupling interactions with nearby 1H spins. In this study, we focused on the ribose 2â?²-19F spin probe in nucleic acids and investigated the effects of 1H-19F spin interactions on the quantitative characterization of slow exchange processes on the millisecond time scale. We demonstrated that the 1H-19F dipolar coupling can significantly affect the interpretation of 19F chemical exchange saturation transfer (CEST) experiments when 1H decoupling is applied, while the 1H-19F interactions have a lesser impact on Carr-Purcell-Meiboom-Gill relaxation dispersion applications. We also proposed a modified CEST scheme to alleviate these artifacts along with experimental verifications on self-complementary RNA systems. The theoretical framework presented in this study can be widely applied to various 19F spin systems where 1H-19F interactions are operative, further expanding the utility of 19F relaxation-based NMR experiments.
Pinpoint analysis of a protein in slow exchange using F 1 F 2 -selective ZZ-exchange spectroscopy: assignment and kinetic analysis
Pinpoint analysis of a protein in slow exchange using F 1 F 2 -selective ZZ-exchange spectroscopy: assignment and kinetic analysis
Abstract
ZZ-exchange spectroscopy is widely used to study slow exchange processes in biomolecules, especially determination of exchange rates and assignment of minor peaks. However, if the exchange cross peaks overlap or the populations are skewed, kinetic analysis is hindered. In order to analyze slow exchange protein dynamics under such conditions, here we have developed a new method by combining ZZ-exchange and...
MeasuringResidual Dipolar Couplingsin Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy
MeasuringResidual Dipolar Couplingsin Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy
Bo Zhao and Qi Zhang
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.5b09014/20151015/images/medium/ja-2015-09014y_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/jacs.5b09014
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/pMjUmAsdDDo
nmrlearner
Journal club
0
10-16-2015 12:49 AM
[NMR paper] Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.
Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.
Related Articles Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.
Nucleic Acids Res. 2014 Nov 17;
Authors: Victora A, Möller HM, Exner TE
Abstract
NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis,...
nmrlearner
Journal club
0
11-19-2014 04:32 PM
Characterizing Slow Chemical Exchange in Nucleic Acids by Carbon CEST and Low Spin-Lock Field R1? NMR Spectroscopy
Characterizing Slow Chemical Exchange in Nucleic Acids by Carbon CEST and Low Spin-Lock Field R1? NMR Spectroscopy
Bo Zhao, Alexandar L. Hansen and Qi Zhang
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja409835y/aop/images/medium/ja-2013-09835y_0005.gif
Journal of the American Chemical Society
DOI: 10.1021/ja409835y
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/iu74AOgzY6s
nmrlearner
Journal club
0
12-19-2013 05:34 AM
Imino Hydrogen Positionsin Nucleic Acids from DensityFunctional Theory Validated by NMR Residual Dipolar Couplings
Imino Hydrogen Positionsin Nucleic Acids from DensityFunctional Theory Validated by NMR Residual Dipolar Couplings
Alexander Grishaev, Jinfa Ying and Ad Bax
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja301775j/aop/images/medium/ja-2012-01775j_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja301775j
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/GoTS9iuWPyg
nmrlearner
Journal club
0
04-17-2012 04:13 AM
Measurement of 1Hâ??15N and 1Hâ??13C residual dipolar couplings in nucleic acids from TROSY intensities
Measurement of 1Hâ??15N and 1Hâ??13C residual dipolar couplings in nucleic acids from TROSY intensities
Abstract Analogous to the recently introduced ARTSY method for measurement of one-bond 1Hâ??15N residual dipolar couplings (RDCs) in large perdeuterated proteins, we introduce methods for measurement of base 13Câ??1H and 15Nâ??1H RDCs in protonated nucleic acids. Measurements are based on quantitative analysis of intensities in 1Hâ??15N and 13Câ??1H TROSY-HSQC spectra, and are illustrated for a 71-nucleotide adenine riboswitch. Results compare favorably with those of conventional...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
MQ-HNCO-TROSY for the measurement of scalar and residual dipolar couplings in larger
Abstract We describe a novel pulse sequence, MQ-HNCO-TROSY, for the measurement of scalar and residual dipolar couplings between amide proton and nitrogen in larger proteins. The experiment utilizes the whole 2TN polarization transfer delay for labeling of 15N chemical shift in a constant time manner, which efficiently doubles the attainable resolution in 15N dimension with respect to the conventional HNCO-TROSY experiment. In addition, the accordion principle is employed for measuring (J + D)NHs, and the multiplet components are selected with the generalized version of the TROSY scheme...