BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-26-2024, 01:21 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,674
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Quantitative analysis of the slow exchange process by 19F NMR in the presence of scalar and dipolar couplings: applications to the ribose 2â?²-19F probe in nucleic acids

Quantitative analysis of the slow exchange process by 19F NMR in the presence of scalar and dipolar couplings: applications to the ribose 2â?²-19F probe in nucleic acids

Abstract

Solution NMR spectroscopy is a particularly powerful technique for characterizing the functional dynamics of biomolecules, which is typically achieved through the quantitative characterization of chemical exchange processes via the measurement of spin relaxation rates. In addition to the conventional nuclei such as 15N and 13C, which are abundant in biomolecules, fluorine-19 (19F) has recently garnered attention and is being widely used as a site-specific spin probe. While 19F offers the advantages of high sensitivity and low background, it can be susceptible to artifacts in quantitative relaxation analyses due to a multitude of dipolar and scalar coupling interactions with nearby 1H spins. In this study, we focused on the ribose 2â?²-19F spin probe in nucleic acids and investigated the effects of 1H-19F spin interactions on the quantitative characterization of slow exchange processes on the millisecond time scale. We demonstrated that the 1H-19F dipolar coupling can significantly affect the interpretation of 19F chemical exchange saturation transfer (CEST) experiments when 1H decoupling is applied, while the 1H-19F interactions have a lesser impact on Carr-Purcell-Meiboom-Gill relaxation dispersion applications. We also proposed a modified CEST scheme to alleviate these artifacts along with experimental verifications on self-complementary RNA systems. The theoretical framework presented in this study can be widely applied to various 19F spin systems where 1H-19F interactions are operative, further expanding the utility of 19F relaxation-based NMR experiments.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Pinpoint analysis of a protein in slow exchange using F 1 F 2 -selective ZZ-exchange spectroscopy: assignment and kinetic analysis
Pinpoint analysis of a protein in slow exchange using F 1 F 2 -selective ZZ-exchange spectroscopy: assignment and kinetic analysis Abstract ZZ-exchange spectroscopy is widely used to study slow exchange processes in biomolecules, especially determination of exchange rates and assignment of minor peaks. However, if the exchange cross peaks overlap or the populations are skewed, kinetic analysis is hindered. In order to analyze slow exchange protein dynamics under such conditions, here we have developed a new method by combining ZZ-exchange and...
nmrlearner Journal club 0 04-01-2020 12:01 AM
Laser-assisted NMR in the Presence of a Cryogenic Probe Enables Multidimensional Data Collection on Amino Acids and Proteins at Unprecedented Sensitivity
Laser-assisted NMR in the Presence of a Cryogenic Probe Enables Multidimensional Data Collection on Amino Acids and Proteins at Unprecedented Sensitivity Publication date: 2 February 2018 Source:Biophysical Journal, Volume 114, Issue 3, Supplement 1</br> Author(s): Miranda Mecha, Yusuke Okuno, Hanming Yang, Silvia Cavagnero</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-07-2018 03:41 PM
MeasuringResidual Dipolar Couplingsin Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy
MeasuringResidual Dipolar Couplingsin Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy Bo Zhao and Qi Zhang http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.5b09014/20151015/images/medium/ja-2015-09014y_0004.gif Journal of the American Chemical Society DOI: 10.1021/jacs.5b09014 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/pMjUmAsdDDo
nmrlearner Journal club 0 10-16-2015 12:49 AM
[NMR paper] Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.
Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes. Related Articles Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes. Nucleic Acids Res. 2014 Nov 17; Authors: Victora A, Möller HM, Exner TE Abstract NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis,...
nmrlearner Journal club 0 11-19-2014 04:32 PM
Characterizing Slow Chemical Exchange in Nucleic Acids by Carbon CEST and Low Spin-Lock Field R1? NMR Spectroscopy
Characterizing Slow Chemical Exchange in Nucleic Acids by Carbon CEST and Low Spin-Lock Field R1? NMR Spectroscopy Bo Zhao, Alexandar L. Hansen and Qi Zhang http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja409835y/aop/images/medium/ja-2013-09835y_0005.gif Journal of the American Chemical Society DOI: 10.1021/ja409835y http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/iu74AOgzY6s
nmrlearner Journal club 0 12-19-2013 05:34 AM
Imino Hydrogen Positionsin Nucleic Acids from DensityFunctional Theory Validated by NMR Residual Dipolar Couplings
Imino Hydrogen Positionsin Nucleic Acids from DensityFunctional Theory Validated by NMR Residual Dipolar Couplings Alexander Grishaev, Jinfa Ying and Ad Bax http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja301775j/aop/images/medium/ja-2012-01775j_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja301775j http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/GoTS9iuWPyg
nmrlearner Journal club 0 04-17-2012 04:13 AM
Measurement of 1Hâ??15N and 1Hâ??13C residual dipolar couplings in nucleic acids from TROSY intensities
Measurement of 1Hâ??15N and 1Hâ??13C residual dipolar couplings in nucleic acids from TROSY intensities Abstract Analogous to the recently introduced ARTSY method for measurement of one-bond 1Hâ??15N residual dipolar couplings (RDCs) in large perdeuterated proteins, we introduce methods for measurement of base 13Câ??1H and 15Nâ??1H RDCs in protonated nucleic acids. Measurements are based on quantitative analysis of intensities in 1Hâ??15N and 13Câ??1H TROSY-HSQC spectra, and are illustrated for a 71-nucleotide adenine riboswitch. Results compare favorably with those of conventional...
nmrlearner Journal club 0 09-30-2011 08:01 PM
MQ-HNCO-TROSY for the measurement of scalar and residual dipolar couplings in larger
Abstract We describe a novel pulse sequence, MQ-HNCO-TROSY, for the measurement of scalar and residual dipolar couplings between amide proton and nitrogen in larger proteins. The experiment utilizes the whole 2TN polarization transfer delay for labeling of 15N chemical shift in a constant time manner, which efficiently doubles the attainable resolution in 15N dimension with respect to the conventional HNCO-TROSY experiment. In addition, the accordion principle is employed for measuring (J + D)NHs, and the multiplet components are selected with the generalized version of the TROSY scheme...
nmrlearner Journal club 0 08-14-2010 04:19 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:12 AM.


Map