BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-25-2023, 03:13 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,795
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Quantitative 1H Nuclear Magnetic Resonance (qNMR) of Aromatic Amino Acids for Protein Quantification

Quantitative 1H Nuclear Magnetic Resonance (qNMR) of Aromatic Amino Acids for Protein Quantification

Hydrolysis of protein samples into amino acids facilitates the use of NMR spectroscopy for protein and peptide quantification. Different conditions have been tested for quantifying aromatic amino acids and proteins. The pH-dependent signal shifts in the aromatic region of amino acid samples were examined. A pH of 12 was found to minimize signal overlap of the four aromatic amino acids. Several aromatic compounds, such as terephthalic acid, sulfoisophthalic acid, and benzene tricarboxylic acid,...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Expanding the Structural Diversity of Protein Building Blocks with Noncanonical Amino Acids Biosynthesized from Aromatic Thiols
Expanding the Structural Diversity of Protein Building Blocks with Noncanonical Amino Acids Biosynthesized from Aromatic Thiols Angewandte Chemie International Edition, EarlyView. More...
nmrlearner Journal club 0 03-23-2021 07:56 PM
[ASAP] Amino Acid Selective 13C Labeling and 13C Scrambling Profile Analysis of Protein a and Side-Chain Carbons in Escherichia coli Utilized for Protein Nuclear Magnetic Resonance
Amino Acid Selective 13C Labeling and 13C Scrambling Profile Analysis of Protein a and Side-Chain Carbons in Escherichia coli Utilized for Protein Nuclear Magnetic Resonance https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.8b00182/20180620/images/medium/bi-2018-00182j_0008.gif Biochemistry DOI: 10.1021/acs.biochem.8b00182 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/fkm85ucmPjs More...
nmrlearner Journal club 0 06-21-2018 09:01 AM
[NMR analysis blog] A Novel qNMR Technique: Quantitative Global Spectrum Deconvolution (qGSD)
A Novel qNMR Technique: Quantitative Global Spectrum Deconvolution (qGSD) Ever since chemists meddled (successfully) into NMR, with the pioneer work made by Proctor and Yu more than 67 years ago, it was implicitly used as a quantitative technique. Indeed, from the very early days of NMR, it was found that the intensity (or area) of the NMR signals (under proper operating conditions) was proportional to the number of nuclides contributing to it. Already in 1953, Jarrett, Sadler, and Shoolery showed the excellent precision of NMR (CW at that time) for the quantitative analysis of a...
nmrlearner News from NMR blogs 0 10-14-2017 04:33 PM
[NMR paper] Fluorinated Aromatic Amino Acids are Sensitive 19F NMR Probes for Bromodomain-Ligand Interactions.
Fluorinated Aromatic Amino Acids are Sensitive 19F NMR Probes for Bromodomain-Ligand Interactions. Related Articles Fluorinated Aromatic Amino Acids are Sensitive 19F NMR Probes for Bromodomain-Ligand Interactions. ACS Chem Biol. 2014 Oct 7; Authors: Mishra NK, Urick AK, Ember S, Schonbrunn E, Pomerantz WC Abstract We describe a 19F NMR method for detecting bromodomain-ligand interactions using fluorine-labeled aromatic amino acids due to the conservation of aromatic residues in the bromodomain binding site. We test the...
nmrlearner Journal club 0 10-08-2014 05:52 PM
[NMR paper] Resonance assignment for a particularly challenging protein based on systematic unlabeling of amino acids to complement incomplete NMR data sets.
Resonance assignment for a particularly challenging protein based on systematic unlabeling of amino acids to complement incomplete NMR data sets. Resonance assignment for a particularly challenging protein based on systematic unlabeling of amino acids to complement incomplete NMR data sets. J Biomol NMR. 2013 Aug 14; Authors: Bellstedt P, Seiboth T, Häfner S, Kutscha H, Ramachandran R, Görlach M Abstract NMR-based structure determination of a protein requires the assignment of resonances as indispensable first step. Even though...
nmrlearner Journal club 0 08-15-2013 07:45 PM
[NMR paper] Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets po
Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains. Related Articles Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains. Biochem Cell Biol. 1998;76(2-3):379-90 Authors: Slupsky CM, Gentile LN, McIntosh LP The measurement of interproton nuclear Overhauser enhancements (NOEs) and dihedral angle restraints of aromatic amino acids is a critical step towards determining the structure of a protein. The complete assignment of the resonances from aromatic...
nmrlearner Journal club 0 11-17-2010 11:06 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:03 PM.


Map