[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group:
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al.
A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner
Journal club
0
08-24-2012 08:01 PM
Quantifying conformational dynamics using solid-state R1? experiments
Quantifying conformational dynamics using solid-state R1? experiments
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Caitlin M. Quinn, Ann E. McDermott</br>
We demonstrate the determination of quantitative rates of molecular reorientation in the solid state with rotating frame (R1?) relaxation measurements. Reorientation of the carbon chemical shift anisotropy (CSA) tensor was used to probe site-specific conformational exchange in a model system, d6 -dimethyl sulfone (d6-DMS). The CSA as a probe of exchange has the advantage that it can still be...
nmrlearner
Journal club
0
05-30-2012 01:40 AM
[NMR900 blog] NSERC awards $2.3 million for lithium ion battery research
NSERC awards $2.3 million for lithium ion battery research
Gillian Goward (McMaster) is leading a major collaborative research project in lithium ion batteries which has been awarded a $2.3 million NSERC grant in the Automotive Partnership Canada program. The total value of this four years project is $3.5 million with contributions from industrial partners, GM Canada, Bruker Ltd., and Heka Electronics.
Researchers from McMaster include Prof. Gillian Goward, in electrochemistry and magnetic resonance, Prof. Gianluigi Botton, in electron microscopy, and Prof. Bartek Protas, in...
nmrlearner
News from NMR blogs
0
03-23-2012 12:55 AM
Dual-band Selective Double Cross Polarization for Heteronuclear Polarization Transfer between Dilute Spins in Solid-State MAS NMR
Dual-band Selective Double Cross Polarization for Heteronuclear Polarization Transfer between Dilute Spins in Solid-State MAS NMR
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Zhengfeng Zhang, Yimin Miao, Xiaoli Liu, Jun Yang, Conggang Li, Feng Deng, Riqiang Fu</br>
A sinusoidal modulation scheme is described for selective heteronuclear polarization transfer between two dilute spins in double cross polarization magic-angle-spinning nuclear magnetic resonance spectroscopy. During the second N->C cross polarization, the 13C RF amplitude is...
nmrlearner
Journal club
0
03-09-2012 09:16 AM
Dual-band Selective Double Cross Polarization for Heteronuclear Polarization Transfer between Dilute Spins in Solid-State MAS NMR
Dual-band Selective Double Cross Polarization for Heteronuclear Polarization Transfer between Dilute Spins in Solid-State MAS NMR
Publication year: 2012
Source: Journal of Magnetic Resonance, Available online 5 March 2012</br>
Zhengfeng*Zhang, Yimin*Miao, Xiaoli*Liu, Jun*Yang, Conggang*Li, ...</br>
A sinusoidal modulation scheme is described for selective heteronuclear polarization transfer between two dilute spins in double cross polarization magic-angle-spinning nuclear magnetic resonance spectroscopy. During the second N->C cross polarization, theC RF amplitude is modulated...
nmrlearner
Journal club
0
03-06-2012 06:04 AM
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes
Alexandar L. Hansen, Patrik Lundstrom, Algirdas Velyvis and Lewis E. Kay
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja210711v/aop/images/medium/ja-2011-10711v_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/ja210711v
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/jaMjjnA_QTw