Selective stable isotope labeling has transformed structural and dynamics analysis of RNA by NMR spectroscopy. These methods can remove 13C-13C dipolar couplings that complicate 13C relaxation analyses. While these phenomena are well documented for sites with adjacent 13C nuclei (e.g. ribose C1â?²), less is known about so-called isolated sites (e.g. adenosine C2). To investigate and quantify the effects of long-range (>â??2Â*Ã?) 13C-13C dipolar interactions on RNA dynamics, we simulated adenosine C2 relaxation rates in uniformly [U-13C/15N]-ATP or selectively [2-13C]-ATP labeled RNAs. Our simulations predict non-negligible 13C-13C dipolar contributions from adenosine C4, C5, and C6 to C2 longitudinal (R1) relaxation rates in [U-13C/15N]-ATP labeled RNAs. Moreover, these contributions increase at higher magnetic fields and molecular weights to introduce discrepancies that exceed 50%. This will become increasingly important at GHz fields. Experimental R1 measurements in the 61 nucleotide human hepatitis B virus encapsidation signal ε RNA labeled with [U-13C/15N]-ATP or [2-13C]-ATP corroborate these simulations. Thus, in the absence of selectively labeled samples, long-range 13C-13C dipolar contributions must be explicitly taken into account when interpreting adenosine C2 R1 rates in terms of motional models for large RNAs.
Deleterious effects of carbonâ??carbon dipolar coupling on RNA NMR dynamics
Deleterious effects of carbonâ??carbon dipolar coupling on RNA NMR dynamics
Abstract
Many regulatory RNAs undergo dynamic exchanges that are crucial for their biological functions and NMR spectroscopy is a versatile tool for monitoring dynamic motions of biomolecules. Meaningful information on biomolecular dynamics requires an accurate measurement of relaxation parameters such as longitudinal (R1) rates, transverse (R2) rates and heteronuclear Overhauser effect (hNOE). However, earlier studies have shown that the large 13Câ??13C interactions...
nmrlearner
Journal club
0
05-03-2020 02:46 PM
Cross-correlated relaxation rates between protein backbone Hâ??X dipolar interactions
Cross-correlated relaxation rates between protein backbone Hâ??X dipolar interactions
Abstract
The relaxation interference between dipoleâ??dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive HNâ??N and...
nmrlearner
Journal club
0
03-13-2017 02:54 AM
[NMR paper] Unraveling long range residual dipolar coupling networks in strongly aligned proteins
Unraveling long range residual dipolar coupling networks in strongly aligned proteins
Publication date: Available online 10 July 2013
Source:Journal of Magnetic Resonance</br>
Author(s): Luke Arbogast , Ananya Majumdar , Joel R. Tolman</br>
Long-range residual dipolar couplings (lrRDCs) have the potential to serve as powerful structural restraints in protein NMR spectroscopy as they can provide both distance and orientation information about nuclei separate in sequence but close in space. Current nonselective methods for their measurement are limited to moderate...
nmrlearner
Journal club
0
07-11-2013 12:07 PM
[NMR paper] Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
From Mendeley Biomolecular NMR group:
Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
Journal of Magnetic Resonance (2011). Volume: 213, Issue: 1. Pages: 151-157. Kang Chen, Nico Tjandra et al.
Published using Mendeley: The library management tool for researchers
nmrlearner
Journal club
0
11-22-2012 11:49 AM
[NMR paper] Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
From Mendeley Biomolecular NMR group:
Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
Journal of Magnetic Resonance (2011). Volume: 213, Issue: 1. Pages: 151-157. Kang Chen, Nico Tjandra et al.
Published using Mendeley: The reference manager for researchers
nmrlearner
Journal club
0
10-12-2012 09:58 AM
[NMR paper] Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
From Mendeley Biomolecular NMR group:
Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
Journal of Magnetic Resonance (2011). Volume: 213, Issue: 1. Pages: 151-157. Kang Chen, Nico Tjandra et al.
Published using Mendeley: The digital library for researchers
nmrlearner
Journal club
0
08-24-2012 08:01 PM
Quantitative comparison of errors in 15N transverse relaxation rates measured using various CPMG phasing schemes
Quantitative comparison of errors in 15N transverse relaxation rates measured using various CPMG phasing schemes
Abstract Nitrogen-15 Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiment are widely used to characterize protein backbone dynamics and chemical exchange parameters. Although an accurate value of the transverse relaxation rate, R2, is needed for accurate characterization of dynamics, the uncertainty in the R2 value depends on the experimental settings and the details of the data analysis itself. Here, we present an analysis of the impact of CPMG pulse phase...
nmrlearner
Journal club
0
04-03-2012 07:56 AM
Water proton spin saturation affects measured protein backboneN spin relaxation rates
Water proton spin saturation affects measured protein backboneN spin relaxation rates
Publication year: 2011
Source: Journal of Magnetic Resonance, Available online 1 October 2011</br>
Kang*Chen, Nico*Tjandra</br>
Protein backboneN NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses....