Related ArticlesProton-translocating carboxyl of subunit c of F1Fo H(+)-ATP synthase: the unique environment suggested by the pKa determined by 1H NMR.
Biochemistry. 1995 Dec 12;34(49):16186-93
Authors: Assadi-Porter FM, Fillingame RH
Subunit c of the H(+)-transporting F1Fo ATP synthase (EC 3.6.1.34) is thought to fold across the membrane as a hairpin of two alpha helices with a conserved Asp/Glu residue, centered in the second membrane-spanning helix, which is thought to function in H+ translocation. NMR studies indicate that the purified subunit c from Escherichia coli is also folded as a hairpin in a chloroform/methanol/H2O (4:4:1) solvent mixture [Girvin, M. E., & Fillingame, R. H. (1993) Biochemistry 32, 12167-12177] and that the conserved Asp remains uniquely reactive in this solvent mixture [Girvin, M. E., & Fillingame, R. H. (1994) Biochemistry 33, 665-674]. The pKa of Asp61 is of interest because of its unique reactivity and because it is thought to protonate and deprotonate during each proton translocation cycle. We have determined the pKa value of the carboxyl group of the functional Asp in wild type and two functional, mutant subunit c proteins, i.e. the Ala24-->Asp (D24D61) and the Ala24-->Asp/Asp61-->Asn (D24N61) mutant proteins. The pKa values were determined by 1H NMR spectroscopy by measuring changes in the alpha and beta proton chemical shifts by constant time two-dimensional (2D) correlated spectroscopy. The pKa of Asp61 in the purified wild type protein was 7.1. This pKa was significantly higher than the pKa of the other two Asp residues, i.e. Asp7 and Asp44 which were 5.4 and 5.6, respectively. The pKa of the two Glu residues in the protein were determined by 2D total correlation spectroscopy and found to be approximately 5.5.(ABSTRACT TRUNCATED AT 250 WORDS)
Combination of NMR spectroscopy and X-ray crystallography offers unique advantages for elucidation of the structural basis of protein complex assembly.
Combination of NMR spectroscopy and X-ray crystallography offers unique advantages for elucidation of the structural basis of protein complex assembly.
Combination of NMR spectroscopy and X-ray crystallography offers unique advantages for elucidation of the structural basis of protein complex assembly.
Sci China Life Sci. 2011 Feb;54(2):101-11
Authors: Feng W, Pan L, Zhang M
NMR spectroscopy and X-ray crystallography are two premium methods for determining the atomic structures of macro-biomolecular complexes. Each method has unique strengths and...
nmrlearner
Journal club
0
02-15-2011 07:17 PM
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR.
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR.
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR.
J Biomol NMR. 2010 Sep;48(1):1-11
Authors: Todokoro Y, Kobayashi M, Sato T, Kawakami T, Yumen I, Aimoto S, Fujiwara T, Akutsu H
The subunit c-ring of H(+)-ATP synthase (F(o) c-ring) plays an essential role in the proton translocation across a membrane driven by the electrochemical potential. To understand its structure and function, we...
nmrlearner
Journal club
0
12-18-2010 12:00 PM
[NMR paper] Subunit A of the E. coli ATP synthase: reconstitution and high resolution NMR with pr
Subunit A of the E. coli ATP synthase: reconstitution and high resolution NMR with protein purified in a mixed polarity solvent.
Related Articles Subunit A of the E. coli ATP synthase: reconstitution and high resolution NMR with protein purified in a mixed polarity solvent.
FEBS Lett. 2004 Jan 2;556(1-3):35-8
Authors: Dmitriev OY, Altendorf K, Fillingame RH
Subunit a of the Escherichia coli ATP synthase, a 30 kDa integral membrane protein, was purified to homogeneity by a novel procedure incorporating selective extraction into a monophasic...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] Structural features of the epsilon subunit of the Escherichia coli ATP synthase deter
Structural features of the epsilon subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy.
Related Articles Structural features of the epsilon subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy.
Nat Struct Biol. 1995 Nov;2(11):961-7
Authors: Wilkens S, Dahlquist FW, McIntosh LP, Donaldson LW, Capaldi RA
The tertiary fold of the epsilon subunit of the Escherichia coli F1F0 ATPsynthase (ECF1F0) has been determined by two- and three-dimensional heteronuclear (13C, 15N) NMR spectroscopy. The epsilon...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] Helical structure and folding of subunit c of F1F0 ATP synthase: 1H NMR resonance ass
Helical structure and folding of subunit c of F1F0 ATP synthase: 1H NMR resonance assignments and NOE analysis.
Related Articles Helical structure and folding of subunit c of F1F0 ATP synthase: 1H NMR resonance assignments and NOE analysis.
Biochemistry. 1993 Nov 16;32(45):12167-77
Authors: Girvin ME, Fillingame RH
Subunit c of the H(+)-transporting F1F0 ATP synthase (EC 3.6.1.34) is thought to fold across the membrane as a hairpin of two alpha-helices and function as a key component of the H(+)-translocase of F0. We report here the initial...
nmrlearner
Journal club
0
08-22-2010 03:01 AM
[NMR paper] Proton NMR of Escherichia coli sulfite reductase: studies of the heme protein subunit
Proton NMR of Escherichia coli sulfite reductase: studies of the heme protein subunit with added ligands.
Related Articles Proton NMR of Escherichia coli sulfite reductase: studies of the heme protein subunit with added ligands.
Biochemistry. 1993 Aug 31;32(34):8782-91
Authors: Kaufman J, Siegel LM, Spicer LD
The heme protein subunit of sulfite reductase (SiR-HP; M(r) 64,000) from Escherichia coli as isolated contains the isobacteriochlorin siroheme exchange-coupled to a cluster in the 2+ oxidation state. SiR-HP in the presence of a suitable...
nmrlearner
Journal club
0
08-22-2010 03:01 AM
[NMR paper] Proton NMR of Escherichia coli sulfite reductase: the unligated hemeprotein subunit.
Proton NMR of Escherichia coli sulfite reductase: the unligated hemeprotein subunit.
Related Articles Proton NMR of Escherichia coli sulfite reductase: the unligated hemeprotein subunit.
Biochemistry. 1993 Mar 23;32(11):2853-67
Authors: Kaufman J, Spicer LD, Siegel LM
The isolated hemeprotein subunit of sulfite reductase (SiR-HP) from Escherichia coli consists of a high spin ferric isobacteriochlorin (siroheme) coupled to a diamagnetic 2+ cluster. When supplied with an artificial electron donor, such as methyl viologen cation radical, SiR-HP...
nmrlearner
Journal club
0
08-21-2010 11:53 PM
[NMR paper] The mobile loop region of the NAD(H) binding component (dI) of proton-translocating n
The mobile loop region of the NAD(H) binding component (dI) of proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum: complete NMR assignment and effects of bound nucleotides.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The mobile loop region of the NAD(H) binding component (dI) of proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum: complete NMR assignment and effects of bound nucleotides.
Biochim Biophys Acta. 1999...