Related ArticlesProton NMR study of the heme environment in bacterial quinol oxidases.
Arch Biochem Biophys. 2004 Jan 15;421(2):186-91
Authors: Zhang J, Osborne JP, Gennis RB, Wang X
The heme environment and ligand binding properties of two relatively large membrane proteins containing multiple paramagnetic metal centers, cytochrome bo3 and bd quinol oxidases, have been studied by high field proton nuclear magnetic resonance (NMR) spectroscopy. The oxidized bo3 enzyme displays well-resolved hyperfine-shifted 1H NMR resonance assignable to the low-spin heme b center. The observed spectral changes induced by addition of cyanide to the protein were attributed to the structural perturbations on the low-spin heme (heme b) center by cyanide ligation to the nearby high-spin heme (heme o) of the protein. The oxidized hd oxidase shows extremely broad signals in the spectral region where protons near high-spin heme centers resonate. Addition of cyanide to the oxidized bd enzyme induced no detectable perturbations on the observed hyperfine signals, indicating the insensitive nature of this heme center toward cyanide. The proton signals near the low-spin heme b558 center are only observed in the presence of 20% formamide, consistent with a critical role of viscosity in detecting NMR signals of large membrane proteins. The reduced bd protein also displays hyperfine-shifted 1H NMR signals, indicating that the high-spin heme centers (hemes b595 and d) remain high-spin upon chemical reduction. The results presented here demonstrate that structural changes of one metal center can significantly influence the structural properties of other nearby metal center(s) in large membrane paramagnetic metalloproteins.
Dynamics of heme in hemoproteins: proton NMR study of myoglobin reconstituted with iron 3-ethyl-2-methylporphyrin.
Dynamics of heme in hemoproteins: proton NMR study of myoglobin reconstituted with iron 3-ethyl-2-methylporphyrin.
Dynamics of heme in hemoproteins: proton NMR study of myoglobin reconstituted with iron 3-ethyl-2-methylporphyrin.
Biochim Biophys Acta. 2011 May 6;
Authors: Juillard S, Chevance S, Bondon A, Simonneaux G
The asymmetric 3-ethyl-2-methylporphyrin iron complex was synthetized and inserted into apomyoglobin. UV-visible spectroscopic studies demonstrated the capacity of iron to coordinate different exogenous axial ligands in ferrous and...
nmrlearner
Journal club
0
05-24-2011 12:00 PM
[NMR paper] Proton NMR investigation of the heme active site structure of an engineered cytochrom
Proton NMR investigation of the heme active site structure of an engineered cytochrome c peroxidase that mimics manganese peroxidase.
Related Articles Proton NMR investigation of the heme active site structure of an engineered cytochrome c peroxidase that mimics manganese peroxidase.
Biochemistry. 1999 Jul 13;38(28):9146-57
Authors: Wang X, Lu Y
The heme active site structure of an engineered cytochrome c peroxidase that closely mimics manganese peroxidase (MnP) has been characterized by both one- and two-dimensional NMR spectroscopy. All...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] Proton NMR investigation of the [4Fe--4S]1+ cluster environment of nitrogenase iron p
Proton NMR investigation of the 1+ cluster environment of nitrogenase iron protein from Azotobacter vinelandii: defining nucleotide-induced conformational changes.
Related Articles Proton NMR investigation of the 1+ cluster environment of nitrogenase iron protein from Azotobacter vinelandii: defining nucleotide-induced conformational changes.
Biochemistry. 1995 Dec 5;34(48):15646-53
Authors: Lanzilotta WN, Holz RC, Seefeldt LC
This work presents the complete assignment of the isotropically shifted 1H NMR resonances of Azotobacter vinelandii...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic a
Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic and steric contributions to stereoselective heme cleavage.
Related Articles Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic and steric contributions to stereoselective heme cleavage.
Biochemistry. 1994 May 31;33(21):6631-41
Authors: Hernández G, Wilks A, Paolesse R, Smith KM, Ortiz de Montellano PR, La Mar GN
The substrate-bound form of the enzyme heme oxygenase (HO), which catalyzed the stereospecific alpha-meso bridge...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Proton NMR study of the heme complex of hemopexin.
Proton NMR study of the heme complex of hemopexin.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Proton NMR study of the heme complex of hemopexin.
Biochim Biophys Acta. 1994 Jul 6;1200(2):161-6
Authors: Deeb RS, Muller-Eberhard U, Peyton DH
Proton nuclear magnetic resonance spectroscopy of the complex of heme with hemopexin, a plasma protein with an exceptionally high affinity for heme, is reported. Characteristic spectra are shown for heme.hemopexin of cow, human,...
nmrlearner
Journal club
0
08-22-2010 03:29 AM
[NMR paper] Proton NMR assignments of heme contacts and catalytically implicated amino acids in c
Proton NMR assignments of heme contacts and catalytically implicated amino acids in cyanide-ligated cytochrome c peroxidase determined from one- and two-dimensional nuclear Overhauser effects.
Related Articles Proton NMR assignments of heme contacts and catalytically implicated amino acids in cyanide-ligated cytochrome c peroxidase determined from one- and two-dimensional nuclear Overhauser effects.
Biochemistry. 1991 May 7;30(18):4398-405
Authors: Satterlee JD, Erman JE
Proton NMR assignments of the heme pocket and catalytically relevant...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
[NMR paper] 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket st
1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5.
Related Articles 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5.
Biochemistry. 1991 Feb 19;30(7):1878-87
Authors: Lee KB, La Mar GN, Pandey RK, Rezzano IN, Mansfield KE, Smith KM
1H nuclear magnetic resonance spectroscopy was used to assign the hyperfine-shifted resonances and determine the position of...