BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-12-2013, 11:42 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Proton-Detected Solid-State NMR Spectroscopy at Aliphatic Sites: Application to Crystalline Systems.

Proton-Detected Solid-State NMR Spectroscopy at Aliphatic Sites: Application to Crystalline Systems.

Related Articles Proton-Detected Solid-State NMR Spectroscopy at Aliphatic Sites: Application to Crystalline Systems.

Acc Chem Res. 2013 Jun 7;

Authors: Asami S, Reif B

Abstract
When applied to biomolecules, solid-state NMR suffers from low sensitivity and resolution. The major obstacle to applying proton detection in the solid state is the proton dipolar network, and deuteration can help avoid this problem. In the past, researchers had primarily focused on the investigation of exchangeable protons in these systems. In this Account, we review NMR spectroscopic strategies that allow researchers to observe aliphatic non-exchangeable proton resonances in proteins with high sensitivity and resolution. Our labeling scheme is based on u-[(2)H,(13)C]-glucose and 5-25% H2O (95-75% D2O) in the M9 bacterial growth medium, known as RAP (reduced adjoining protonation). We highlight spectroscopic approaches for obtaining resonance assignments, a prerequisite for any study of structure and dynamics of a protein by NMR spectroscopy. Because of the dilution of the proton spin system in the solid state, solution-state NMR (1)HCC(1)H type strategies cannot easily be transferred to these experiments. Instead, we needed to pursue ((1)H)CC(1)H, CC(1)H, (1)HCC or ((2)H)CC(1)H type experiments. In protonated samples, we obtained distance restraints for structure calculations from samples grown in bacteria in media containing [1,3]-(13)C-glycerol, [2]-(13)C-glycerol, or selectively enriched glucose to dilute the (13)C spin system. In RAP-labeled samples, we obtained a similar dilution effect by randomly introducing protons into an otherwise deuterated matrix. This isotopic labeling scheme allows us to measure the long-range contacts among aliphatic protons, which can then serve as restraints for the three-dimensional structure calculation of a protein. Due to the high gyromagnetic ratio of protons, longer range contacts are more easily accessible for these nuclei than for carbon nuclei in homologous experiments. Finally, the RAP labeling scheme allows access to dynamic parameters, such as longitudinal relaxation times T1, and order parameters S(2) for backbone and side chain carbon resonances. We expect that these measurements will open up new opportunities to obtain a more detailed description of protein backbone and side chain dynamics.


PMID: 23745638 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy Abstract Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the...
nmrlearner Journal club 0 09-20-2012 06:06 AM
Rapid Measurement of PseudocontactShifts in Metalloproteinsby Proton-Detected Solid-State NMR Spectroscopy
Rapid Measurement of PseudocontactShifts in Metalloproteinsby Proton-Detected Solid-State NMR Spectroscopy Michael J. Knight, Isabella C. Felli, Roberta Pierattelli, Ivano Bertini, Lyndon Emsley, Torsten Herrmann and Guido Pintacuda http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja306813j/aop/images/medium/ja-2012-06813j_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja306813j http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/eCGR552L3hw
nmrlearner Journal club 0 08-31-2012 09:37 PM
Proton-Detected Solid-State NMR Reveals Intramembrane Polar Networks in a Seven-Helical Transmembrane Protein Proteorhodopsin
Proton-Detected Solid-State NMR Reveals Intramembrane Polar Networks in a Seven-Helical Transmembrane Protein Proteorhodopsin Meaghan E. Ward, Lichi Shi, Evelyn Lake, Sridevi Krishnamurthy, Howard Hutchins, Leonid S. Brown and Vladimir Ladizhansky http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja207137h/aop/images/medium/ja-2011-07137h_0008.gif Journal of the American Chemical Society DOI: 10.1021/ja207137h http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/Vzwkh1cjxOU
nmrlearner Journal club 0 10-09-2011 06:15 AM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Angew Chem Int Ed Engl. 2011 Apr 20; Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner Journal club 0 04-22-2011 02:00 PM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Angew Chem Int Ed Engl. 2011 Apr 14; Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner Journal club 0 04-16-2011 12:29 PM
A Proton-Detected 4D Solid-State NMR Experiment for Protein Structure Determination.
A Proton-Detected 4D Solid-State NMR Experiment for Protein Structure Determination. A Proton-Detected 4D Solid-State NMR Experiment for Protein Structure Determination. Chemphyschem. 2011 Apr 4;12(5):915-8 Authors: Huber M, Hiller S, Schanda P, Ernst M, Böckmann A, Verel R, Meier BH
nmrlearner Journal club 0 03-29-2011 07:04 PM
High Resolution (1)H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Reson
High Resolution (1)H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Resonances: Access to Tertiary Structure Information. Related Articles High Resolution (1)H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Resonances: Access to Tertiary Structure Information. J Am Chem Soc. 2010 Oct 12; Authors: Asami S, Schmieder P, Reif B Biological magic angle spinning (MAS) solid-state nuclear magnetic resonance spectroscopy has developed rapidly over the past two decades. For the structure determination of a protein by solid-state NMR,...
nmrlearner Journal club 0 10-15-2010 02:01 AM
High Resolution 1H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Resonan
High Resolution 1H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Resonances: Access to Tertiary Structure Information Sam Asami, Peter Schmieder and Bernd Reif http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja106170h/aop/images/medium/ja-2010-06170h_0003.gif Journal of the American Chemical Society DOI: 10.1021/ja106170h http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/FuDz8jUhWPE
nmrlearner Journal club 0 10-13-2010 04:10 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:21 PM.


Map