Related ArticlesProton-Detected NMR Spectroscopy of Nanodisc-Embedded Membrane Proteins: MAS Solid-State vs. Solution-State Methods.
J Phys Chem B. 2017 Jul 24;:
Authors: Lakomek NA, Frey L, Bibow S, Böckmann A, Riek R, Meier BH
Abstract
The structural and dynamical characterization of membrane proteins in a lipid bilayer at physiological pH and temperature and free of crystal constraints is crucial for the elucidation of a structure/dynamics - activity relationship. Towards this aim, we explore here the properties of the outer-membrane protein OmpX embedded in lipid bilayer nanodiscs using proton-detected magic angle spinning (MAS) solid-state NMR at 60 and 110 kHz. [1H,15N]-correlation spectra overlay well with the corresponding solution-state NMR spectra. Line widths as well as line intensities in solid and solution both depend critically on the sample temperature, and, in particular, on the crossing of the lipid phase-transition temperature. 110 kHz MAS experiments yield well resolved NMR spectra also for fully protonated OmpX and both below and above the lipid phase transition temperature.
PMID: 28737919 [PubMed - as supplied by publisher]
[NMR paper] Probing the Conformationally Excited States of Membrane Proteins via (1)H-detected MAS Solid-State NMR Spectroscopy.
Probing the Conformationally Excited States of Membrane Proteins via (1)H-detected MAS Solid-State NMR Spectroscopy.
Probing the Conformationally Excited States of Membrane Proteins via (1)H-detected MAS Solid-State NMR Spectroscopy.
J Phys Chem B. 2017 Apr 13;:
Authors: Gopinath T, Nelson SE, Soller KJ, Veglia G
Abstract
Proteins exist in ensembles of conformational states that interconvert on various motional time scales. High-energy states of proteins, often referred to as conformationally excited states, are sparsely...
nmrlearner
Journal club
0
04-14-2017 10:27 AM
[NMR paper] Sensitive proton-detected solid-state NMR spectroscopy of large proteins with selective CH3 labelling: application to the 50S ribosome subunit.
Sensitive proton-detected solid-state NMR spectroscopy of large proteins with selective CH3 labelling: application to the 50S ribosome subunit.
Sensitive proton-detected solid-state NMR spectroscopy of large proteins with selective CH3 labelling: application to the 50S ribosome subunit.
Chem Commun (Camb). 2016 Jul 7;
Authors: Kurauskas V, Crublet E, Macek P, Kerfah R, Gauto DF, Boisbouvier J, Schanda P
Abstract
Solid-state NMR spectroscopy allows the characterization of the structure, interactions and dynamics of insoluble...
nmrlearner
Journal club
0
07-08-2016 10:02 PM
[NMR paper] Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
Related Articles Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
J Magn Reson. 2015 Nov 9;261:149-156
Authors: Mote KR, Madhu PK
Abstract
(1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy...
nmrlearner
Journal club
0
11-19-2015 05:22 PM
[NMR paper] Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach.
Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach.
Related Articles Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach.
J Biomol NMR. 2015 Jan 8;
Authors: Sinnige T, Houben K, Pritisanac I, Renault M, Boelens R, Baldus M
Abstract
The ?-barrel assembly machinery (BAM) is involved in folding and insertion of outer membrane proteins in Gram-negative bacteria, a process that is still poorly...
nmrlearner
Journal club
0
01-09-2015 03:58 PM
Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach
Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach
Abstract
The β-barrel assembly machinery (BAM) is involved in folding and insertion of outer membrane proteins in Gram-negative bacteria, a process that is still poorly understood. With its 790 residues, BamA presents a challenge to current NMR methods. We utilized a â??divide and conquerâ?? approach in which we first obtained resonance assignments for BamAâ??s periplasmic POTRA domains 4 and 5 by solution NMR. Comparison of...
nmrlearner
Journal club
0
01-08-2015 01:02 AM
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy
Abstract Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the...
nmrlearner
Journal club
0
09-20-2012 06:06 AM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 20;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner
Journal club
0
04-22-2011 02:00 PM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 14;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B