Publication date: Available online 23 August 2013 Source:Journal of Magnetic Resonance
Author(s): Tairan Yuwen , Nikolai R. Skrynnikov
15N R2 relaxation is one of the most informative experiments for characterization of intrinsically disordered proteins (IDPs). Small changes in nitrogen R2 rates are often used to determine how IDPs respond to various biologically relevant perturbations such as point mutations, posttranslational modifications, weak ligand interactions, etc. However collecting high-quality 15N relaxation data can be difficult. Of necessity, the samples of IDPs are often prepared with low protein concentration and the measurement time can be limited because of rapid sample degradation. Furthermore, due to hardware limitations standard experiments such as 15N spin-lock and CPMG can sample the relaxation decay only to ca. 150 ms. This is much shorter than 15N T2 times in disordered proteins at or near physiological temperature. As a result, the sampling of relaxation decay profiles in these experiments is suboptimal, which further lowers the precision of the measurements. Here we report a new implementation of the proton-decoupled (PD) CPMG experiment which allows one to sample 15N R2 relaxation decay up to ca. 0.5-1 s. The new experiment has been validated through comparison with the well-established spin-lock measurement. Using dilute samples of denatured ubiquitin, we have demonstrated that PD-CPMG produces up to 3-fold improvement in the precision of the data. It is expected that for IDPs the gains may be even more substantial. We have also shown that this sequence has a number of favorable properties: (i) the spectra are recorded with narrow linewidth in nitrogen dimension; (ii) 15N offset correction is small and easy to calculate; (iii) the experiment is immune to various spurious effects arising from solvent exchange; (iv) the results are stable with respect to pulse miscalibration and rf field inhomogeneity; (v) with minimal change, the pulse sequence can also be used to measure R2 relaxation of 15N? spins in arginine side chains. We anticipate that the new experiment will be a valuable addition to the NMR toolbox for studies of IDPs. Graphical abstract
[Question from NMRWiki Q&A forum] proton decoupled of 14N
proton decoupled of 14N
Hi everyone,
Has someone tried to run proton decoupled of 14N? How long should be the 14N decoupling pulse? I had some problems with the lock signal (lost it) when I tried the pulse sequence zgig (1H on the observed channel). When recording 1D 14N spectrum, the lock was fine (it had some small distortions, but was not lost). We have a DRX 400 MHz spectrometer, with Topspin 1.3 and a BBFO atma probe.Any suggestions on how to set up this experiment will be highly appreciated. Thanks a lot, alina
Check if somebody has answered this question on NMRWiki QA forum
nmrlearner
News from other NMR forums
0
08-05-2013 09:06 AM
[NMR paper] Fast hydrogen exchange affects (15)N relaxation measurements in intrinsically disordered proteins.
Fast hydrogen exchange affects (15)N relaxation measurements in intrinsically disordered proteins.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Fast hydrogen exchange affects (15)N relaxation measurements in intrinsically disordered proteins.
J Biomol NMR. 2013 Jan 12;
Authors: Kim S, Wu KP, Baum J
Abstract
Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back...
nmrlearner
Journal club
0
02-03-2013 10:22 AM
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group:
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al.
A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner
Journal club
0
01-02-2013 01:48 PM
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group:
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al.
A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner
Journal club
0
11-22-2012 11:49 AM
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group:
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al.
A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner
Journal club
0
10-12-2012 09:58 AM
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group:
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al.
A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner
Journal club
0
08-24-2012 08:01 PM
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes
Alexandar L. Hansen, Patrik Lundstrom, Algirdas Velyvis and Lewis E. Kay
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja210711v/aop/images/medium/ja-2011-10711v_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/ja210711v
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/jaMjjnA_QTw
nmrlearner
Journal club
0
02-03-2012 09:50 AM
[NMR paper] 3D NMR experiments for measuring 15N relaxation data of large proteins: application t
3D NMR experiments for measuring 15N relaxation data of large proteins: application to the 44 kDa ectodomain of SIV gp41.
Related Articles 3D NMR experiments for measuring 15N relaxation data of large proteins: application to the 44 kDa ectodomain of SIV gp41.
J Magn Reson. 1998 Dec;135(2):368-72
Authors: Caffrey M, Kaufman J, Stahl SJ, Wingfield PT, Gronenborn AM, Clore GM
A suite of 3D NMR experiments for measuring 15N-¿1H¿ NOE, 15N T1, and 15N T1rho values in large proteins, uniformly labeled with 15N and 13C, is presented. These...