BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-22-2015, 01:36 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Protocol To Make Protein NMR Structures Amenable to Stable Long Time Scale Molecular Dynamics Simulations.

Protocol To Make Protein NMR Structures Amenable to Stable Long Time Scale Molecular Dynamics Simulations.

Related Articles Protocol To Make Protein NMR Structures Amenable to Stable Long Time Scale Molecular Dynamics Simulations.

J Chem Theory Comput. 2014 Apr 8;10(4):1781-7

Authors: Li DW, Brüschweiler R

Abstract
A robust protocol for the treatment of NMR protein structures is presented that makes them amenable to long time scale molecular dynamics (MD) simulations that are stable. The protocol embeds an NMR structure in a native low energy region of the recently developed ff99SB_??(g24;CS) molecular mechanics force field. Extended MD trajectories that start from these structures show good consistency with proton-proton nuclear Overhauser effect data, and they reproduce NMR chemical shift data better than the original NMR structures as is demonstrated for four protein systems. Moreover, for all proteins studied here the simulations spontaneously approach the X-ray crystal structures, thereby improving the effective resolution of the initial structural models.


PMID: 26580385 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Time-averaged order parameter restraints in molecular dynamics simulations
Time-averaged order parameter restraints in molecular dynamics simulations Abstract A method is described that allows experimental \(S^2\) order parameters to be enforced as a time-averaged quantity in molecular dynamics simulations. The two parameters that characterize time-averaged restraining, the memory relaxation time and the weight of the restraining potential energy term in the potential energy function used in the simulation, are systematically investigated...
nmrlearner Journal club 0 10-14-2014 09:48 PM
From the Micelle to the Membrane: Molecular Dynamics Simulations of Solution NMR Structures of Membrane Proteins
From the Micelle to the Membrane: Molecular Dynamics Simulations of Solution NMR Structures of Membrane Proteins 29 January 2013 Publication year: 2013 Source:Biophysical Journal, Volume 104, Issue 2, Supplement 1</br> </br> </br> </br></br>
nmrlearner Journal club 0 02-03-2013 10:13 AM
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction Abstract While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein 1H chemical shifts in which molecular motions, the...
nmrlearner Journal club 0 02-11-2012 10:31 AM
Microsecond Time-Scale Conformational Exchange in Proteins: Using Long Molecular Dynamics Trajectory To Simulate NMR Relaxation Dispersion Data
Microsecond Time-Scale Conformational Exchange in Proteins: Using Long Molecular Dynamics Trajectory To Simulate NMR Relaxation Dispersion Data Yi Xue, Joshua M. Ward, Tairan Yuwen, Ivan S. Podkorytov and Nikolai R. Skrynnikov http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja206442c/aop/images/medium/ja-2011-06442c_0001.gif Journal of the American Chemical Society DOI: 10.1021/ja206442c http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/NvRRKHU2H3k
nmrlearner Journal club 0 01-28-2012 05:27 AM
[KPWU blog] NMR protocol (recipe)?make stretch gel for protein RDC measurement
NMR protocol (recipe)?make stretch gel for protein RDC measurement I bought the starter kit (NE-373-B-6/4.2) at NewEraNMR for RDC experiment on Varian NMR (with 700 MHz grade) and I decided to stretch the gel a lot, so 6mm-wide gel chamber and “6mm-4.2mm gel funnel” are included. The NMR tube seems to be more fragile than Wilmad products I often used, so I also ordered http://stats.wordpress.com/b.gif?host=kpwu.wordpress.com&blog=76132&post=587&subd=kpwu&ref=&feed=1 Go to KPWU blog to read complete post.
nmrlearner News from NMR blogs 0 10-20-2011 09:45 AM
[NMR paper] Molecular dynamics simulations of photoactive yellow protein (PYP) in three states of
Molecular dynamics simulations of photoactive yellow protein (PYP) in three states of its photocycle: a comparison with X-ray and NMR data and analysis of the effects of Glu46 deprotonation and mutation. Related Articles Molecular dynamics simulations of photoactive yellow protein (PYP) in three states of its photocycle: a comparison with X-ray and NMR data and analysis of the effects of Glu46 deprotonation and mutation. Eur Biophys J. 2002 Dec;31(7):504-20 Authors: Antes I, Thiel W, van Gunsteren WF Photoactive yellow protein (PYP) is a...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N r
Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. Related Articles Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc. 2001 Feb 7;123(5):967-75 Authors: Mulder FA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE A new NMR experiment is presented for...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-
Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-diffusion measurements. Related Articles Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-diffusion measurements. J Biomol Struct Dyn. 1999 Aug;17(1):157-74 Authors: Orekhov VY, Korzhnev DM, Pervushin KV, Hoffmann E, Arseniev AS This paper presents a procedure for detection of intermediate nanosecond internal dynamics in globular proteins. The procedure uses 1H-15N relaxation measurements at several spectrometer frequencies...
nmrlearner Journal club 0 11-18-2010 08:31 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:23 AM.


Map