BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-20-2012, 02:28 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Protein structure modeling using sparse NMR data [Biophysics and Computational Biology]

Protein structure modeling using sparse NMR data [Biophysics and Computational Biology]

Thompson, J. M., Sgourakis, N. G., Liu, G., Rossi, P., Tang, Y., Mills, J. L., Szyperski, T., Montelione, G. T., Baker, D....
Date: 2012-06-19

While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining , 13C, and 15N backbone and 13C? chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0*Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2–1.9*Å relative to the conventional determined NMR ensembles and of 0.9–1.6*Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments. Read More


PNAS:
Number: 25
Volume: 109
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Ultrahigh resolution protein structures using NMR chemical shift tensors [Biophysics and Computational Biology]
Ultrahigh resolution protein structures using NMR chemical shift tensors Wylie, B. J., Sperling, L. J., Nieuwkoop, A. J., Franks, W. T., Oldfield, E., Rienstra, C. M.... Date: 2011-10-11 NMR chemical shift tensors (CSTs) in proteins, as well as their orientations, represent an important new restraint class for protein structure refinement and determination. Here, we present the first determination of both CST magnitudes and orientations for 13C? and 15N (peptide backbone) groups in a protein, the ?1 IgG binding domain of protein G from Streptococcus spp., GB1. Site-specific 13C? and...
nmrlearner Journal club 0 10-12-2011 06:37 AM
Random phase detection in multidimensional NMR [Biophysics and Computational Biology]
Random phase detection in multidimensional NMR Maciejewski, M. W., Fenwick, M., Schuyler, A. D., Stern, A. S., Gorbatyuk, V., Hoch, J. C.... Date: 2011-10-04 Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency...
nmrlearner Journal club 0 10-04-2011 08:47 PM
Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR [Biophysics and Computational Biology]
Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR Kato, H., van Ingen, H., Zhou, B.-R., Feng, H., Bustin, M., Kay, L. E., Bai, Y.... Date: 2011-07-26 Chromatin structure and function are regulated by numerous proteins through specific binding to nucleosomes. The structural basis of many of these interactions is unknown, as in the case of the high mobility group nucleosomal (HMGN) protein family that regulates various chromatin functions, including transcription. Here, we report the architecture of the HMGN2-nucleosome...
nmrlearner Journal club 0 07-26-2011 11:22 PM
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion [Biophysics and Computational Biology]
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion Meinhold, D. W., Wright, P. E.... Date: 2011-05-31 Detailed understanding of protein function and malfunction hinges on the ability to characterize transiently populated states and the transitions between them. Here, we use 15N, , and 13CO NMR R2 relaxation dispersion to investigate spontaneous unfolding and refolding events of native apomyoglobin. Above pH 5.0, dispersion is dominated by processes involving fluctuations of the F-helix region, which...
nmrlearner Journal club 0 05-31-2011 11:41 PM
Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy [Biophysics and Computational Biology]
Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy Masterson, L. R., Shi, L., Metcalfe, E., Gao, J., Taylor, S. S., Veglia, G.... Date: 2011-04-26 Protein kinase A (PKA) is a ubiquitous phosphoryl transferase that mediates hundreds of cell signaling events. During turnover, its catalytic subunit (PKA-C) interconverts between three major conformational states (open, intermediate, and closed) that are dynamically and allosterically activated by nucleotide binding. We show that the structural transitions between these...
nmrlearner Journal club 0 04-27-2011 04:16 AM
Mapping allostery through the covariance analysis of NMR chemical shifts [Biophysics and Computational Biology]
Mapping allostery through the covariance analysis of NMR chemical shifts Selvaratnam, R., Chowdhury, S., VanSchouwen, B., Melacini, G.... Date: 2011-04-12 Allostery is a fundamental mechanism of regulation in biology. The residues at the end points of long-range allosteric perturbations are commonly identified by the comparative analyses of structures and dynamics in apo and effector-bound states. However, the networks of interactions mediating the propagation of allosteric signals between the end points often remain elusive. Here we show that the covariance analysis of NMR chemical...
nmrlearner Journal club 0 04-13-2011 01:15 AM
[NMR paper] TOUCHSTONEX: protein structure prediction with sparse NMR data.
TOUCHSTONEX: protein structure prediction with sparse NMR data. Related Articles TOUCHSTONEX: protein structure prediction with sparse NMR data. Proteins. 2003 Nov 1;53(2):290-306 Authors: Li W, Zhang Y, Kihara D, Huang YJ, Zheng D, Montelione GT, Kolinski A, Skolnick J TOUCHSTONEX, a new method for folding proteins that uses a small number of long-range contact restraints derived from NMR experimental NOE (nuclear Overhauser enhancement) data, is described. The method employs a new lattice-based, reduced model of proteins that explicitly...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] De novo protein structure determination using sparse NMR data.
De novo protein structure determination using sparse NMR data. Related Articles De novo protein structure determination using sparse NMR data. J Biomol NMR. 2000 Dec;18(4):311-8 Authors: Bowers PM, Strauss CE, Baker D We describe a method for generating moderate to high-resolution protein structures using limited NMR data combined with the ab initio protein structure prediction method Rosetta. Peptide fragments are selected from proteins of known structure based on sequence similarity and consistency with chemical shift and NOE data. Models...
nmrlearner Journal club 0 11-19-2010 08:29 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:03 PM.


Map