Related ArticlesProtein structure determination by conformational space annealing using NMR geometric restraints.
Proteins. 2015 Oct 10;
Authors: Joo K, Joung I, Lee J, Lee J, Lee W, Brooks B, Lee SJ, Lee J
Abstract
We have carried out numerical experiments to investigate the applicability of the global optimization method of conformational space annealing (CSA) to the enhanced NMR protein structure determination over existing PDB structures. The NMR protein structure determination is driven by the optimization of collective multiple restraints arising from experimental data and the basic stereo-chemical properties of a protein-like molecule. By rigorous and straightforward application of CSA to the identical NMR experimental data used to generate existing PDB structures, we re-determined 56 recent PDB protein structures starting from fully randomized structures. The quality of CSA-generated structures and existing PDB structures were assessed by multi-objective functions in terms of their consistencies with experimental data and the requirements of protein-like stereo-chemistry. In 54 out of 56 cases, CSA-generated structures were better than existing PDB structures in the Pareto-dominant manner, while in the remaining two cases, it was a tie with mixed results. As a whole, all structural features tested improved in a statistically meaningful manner. The most improved feature was the Ramachandran favored portion of backbone torsion angles with about 8.6% improvement from 88.9% to 97.5% (P-value < 10(- 17) ). We show that by straightforward application of CSA to the efficient global optimization of an energy function, NMR structures will be of better quality than existing PDB structures. This article is protected by copyright. All rights reserved.
PMID: 26454251 [PubMed - as supplied by publisher]
[NMR paper] Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints.
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints.
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints.
J Biomol NMR. 2014 Nov 27;
Authors: Furuita K, Kataoka S, Sugiki T, Hattori Y, Kobayashi N, Ikegami T, Shiozaki K, Fujiwara T, Kojima C
Abstract
NMR structure determination of soluble proteins...
nmrlearner
Journal club
0
11-28-2014 11:37 AM
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints
Abstract
NMR structure determination of soluble proteins depends in large part on distance restraints derived from NOE. In this study, we examined the impact of paramagnetic relaxation enhancement (PRE)-derived distance restraints on protein structure determination. A high-resolution structure of the loop-rich soluble protein Sin1 could not be determined by conventional NOE-based...
nmrlearner
Journal club
0
11-26-2014 10:50 PM
[NMR paper] Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints.
Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints.
Related Articles Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints.
Curr Opin Struct Biol. 2014 Feb;24C:45-53
Authors: Hass MA, Ubbink M
Abstract
Paramagnetic NMR spectroscopy has evolved rapidly in the last decade, and has shown to be a very useful tool for solving structures of protein-protein complexes. A major breakthrough has been the development of...
nmrlearner
Journal club
0
04-12-2014 06:36 PM
Structure determination of protein–protein complexes with long-range anisotropic paramagnetic NMR restraints
Structure determination of protein–protein complexes with long-range anisotropic paramagnetic NMR restraints
Publication date: February 2014
Source:Current Opinion in Structural Biology, Volume 24</br>
Author(s): Mathias AS Hass , Marcellus Ubbink</br>
Paramagnetic NMR spectroscopy has evolved rapidly in the last decade, and has shown to be a very useful tool for solving structures of protein–protein complexes. A major breakthrough has been the development of paramagnetic metal binding tags that can be attached specifically to the protein. These tags have greatly...
nmrlearner
Journal club
0
12-21-2013 03:15 PM
[NMR paper] Efficient long-distance NMR-PRE and EPR-DEER restraints for two-domain protein structure determination.
Efficient long-distance NMR-PRE and EPR-DEER restraints for two-domain protein structure determination.
Related Articles Efficient long-distance NMR-PRE and EPR-DEER restraints for two-domain protein structure determination.
Protein Cell. 2013 Nov 27;
Authors: Wu K, Shi C, Li J, Wang H, Shi P, Chen L, Wu F, Xiong Y, Tian C
PMID: 24282082
nmrlearner
Journal club
0
11-28-2013 05:18 PM
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
J Am Chem Soc. 2011 Apr 4;
Authors: Ryabov Y, Schwieters CD, Clore GM
(15)N R(2)/R(1) relaxation data contain information on molecular shape and size as well as on bond vector orientations relative to...
nmrlearner
Journal club
0
04-06-2011 10:54 AM
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints
Yaroslav Ryabov, Charles D. Schwieters and G. Marius Clore
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja201020c/aop/images/medium/ja-2011-01020c_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja201020c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/3J1IyCLkQMQ
nmrlearner
Journal club
0
04-05-2011 10:37 AM
Distance restraints for structure determination
Distance restraints for structure determination
Experimentally derived parameters for protein structure determination, Part 1: nOe distance restraints. Lecture by Dr. Matthew Cordes from University of Arizona.
More...