BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 10-12-2015, 01:04 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,809
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Protein structure determination by conformational space annealing using NMR geometric restraints.

Protein structure determination by conformational space annealing using NMR geometric restraints.

Related Articles Protein structure determination by conformational space annealing using NMR geometric restraints.

Proteins. 2015 Oct 10;

Authors: Joo K, Joung I, Lee J, Lee J, Lee W, Brooks B, Lee SJ, Lee J

Abstract
We have carried out numerical experiments to investigate the applicability of the global optimization method of conformational space annealing (CSA) to the enhanced NMR protein structure determination over existing PDB structures. The NMR protein structure determination is driven by the optimization of collective multiple restraints arising from experimental data and the basic stereo-chemical properties of a protein-like molecule. By rigorous and straightforward application of CSA to the identical NMR experimental data used to generate existing PDB structures, we re-determined 56 recent PDB protein structures starting from fully randomized structures. The quality of CSA-generated structures and existing PDB structures were assessed by multi-objective functions in terms of their consistencies with experimental data and the requirements of protein-like stereo-chemistry. In 54 out of 56 cases, CSA-generated structures were better than existing PDB structures in the Pareto-dominant manner, while in the remaining two cases, it was a tie with mixed results. As a whole, all structural features tested improved in a statistically meaningful manner. The most improved feature was the Ramachandran favored portion of backbone torsion angles with about 8.6% improvement from 88.9% to 97.5% (P-value < 10(- 17) ). We show that by straightforward application of CSA to the efficient global optimization of an energy function, NMR structures will be of better quality than existing PDB structures. This article is protected by copyright. All rights reserved.


PMID: 26454251 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints.
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints. Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints. J Biomol NMR. 2014 Nov 27; Authors: Furuita K, Kataoka S, Sugiki T, Hattori Y, Kobayashi N, Ikegami T, Shiozaki K, Fujiwara T, Kojima C Abstract NMR structure determination of soluble proteins...
nmrlearner Journal club 0 11-28-2014 11:37 AM
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints Abstract NMR structure determination of soluble proteins depends in large part on distance restraints derived from NOE. In this study, we examined the impact of paramagnetic relaxation enhancement (PRE)-derived distance restraints on protein structure determination. A high-resolution structure of the loop-rich soluble protein Sin1 could not be determined by conventional NOE-based...
nmrlearner Journal club 0 11-26-2014 10:50 PM
[NMR paper] Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints.
Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints. Related Articles Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints. Curr Opin Struct Biol. 2014 Feb;24C:45-53 Authors: Hass MA, Ubbink M Abstract Paramagnetic NMR spectroscopy has evolved rapidly in the last decade, and has shown to be a very useful tool for solving structures of protein-protein complexes. A major breakthrough has been the development of...
nmrlearner Journal club 0 04-12-2014 06:36 PM
Structure determination of protein–protein complexes with long-range anisotropic paramagnetic NMR restraints
Structure determination of protein–protein complexes with long-range anisotropic paramagnetic NMR restraints Publication date: February 2014 Source:Current Opinion in Structural Biology, Volume 24</br> Author(s): Mathias AS Hass , Marcellus Ubbink</br> Paramagnetic NMR spectroscopy has evolved rapidly in the last decade, and has shown to be a very useful tool for solving structures of protein–protein complexes. A major breakthrough has been the development of paramagnetic metal binding tags that can be attached specifically to the protein. These tags have greatly...
nmrlearner Journal club 0 12-21-2013 03:15 PM
[NMR paper] Efficient long-distance NMR-PRE and EPR-DEER restraints for two-domain protein structure determination.
Efficient long-distance NMR-PRE and EPR-DEER restraints for two-domain protein structure determination. Related Articles Efficient long-distance NMR-PRE and EPR-DEER restraints for two-domain protein structure determination. Protein Cell. 2013 Nov 27; Authors: Wu K, Shi C, Li J, Wang H, Shi P, Chen L, Wu F, Xiong Y, Tian C PMID: 24282082
nmrlearner Journal club 0 11-28-2013 05:18 PM
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints. Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints. J Am Chem Soc. 2011 Apr 4; Authors: Ryabov Y, Schwieters CD, Clore GM (15)N R(2)/R(1) relaxation data contain information on molecular shape and size as well as on bond vector orientations relative to...
nmrlearner Journal club 0 04-06-2011 10:54 AM
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints Yaroslav Ryabov, Charles D. Schwieters and G. Marius Clore http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja201020c/aop/images/medium/ja-2011-01020c_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja201020c http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/3J1IyCLkQMQ
nmrlearner Journal club 0 04-05-2011 10:37 AM
Distance restraints for structure determination
Distance restraints for structure determination Experimentally derived parameters for protein structure determination, Part 1: nOe distance restraints. Lecture by Dr. Matthew Cordes from University of Arizona. More...
nmrlearner General 0 08-16-2010 03:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:01 PM.


Map