Related ArticlesProtein-protein interaction revealed by NMR T(2) relaxation experiments: the lipoyl domain and E1 component of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus.
T(2) relaxation experiments in combination with chemical shift and site-directed mutagenesis data were used to identify sites involved in weak but specific protein-protein interactions in the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. The pyruvate decarboxylase component, a heterotetramer E1(alpha(2)beta(2)), is responsible for the first committed and irreversible catalytic step. The accompanying reductive acetylation of the lipoyl group attached to the dihydrolipoyl acetyltransferase (E2) component involves weak, transient but specific interactions between E1 and the lipoyl domain of the E2 polypeptide chain. The interactions between the free lipoyl domain (9 kDa) and free E1alpha (41 kDa), E1beta (35 kDa) and intact E1alpha(2)beta(2) (152 kDa) components, all the products of genes or sub-genes over-expressed in Escherichia coli, were investigated using heteronuclear 2D NMR spectroscopy. The experiments were conducted with uniformly (15)N-labeled lipoyl domain and unlabeled E1 components. Major contact points on the lipoyl domain were identified from changes in the backbone (15)N spin-spin relaxation time in the presence and absence of E1(alpha(2)beta(2)) or its individual E1alpha or E1beta components. Although the E1alpha subunit houses the sequence motif associated with the essential cofactor, thiamin diphosphate, recognition of the lipoyl domain was distributed over sites in both E1alpha and E1beta. A single point mutation (N40A) on the lipoyl domain significantly reduces its ability to be reductively acetylated by the cognate E1. None the less, the N40A mutant domain appears to interact with E1 similarly to the wild-type domain. This suggests that the lipoyl group of the N40A lipoyl domain is not being presented to E1 in the correct orientation, owing perhaps to slight perturbations in the lipoyl domain structure, especially in the lipoyl-lysine beta-turn region, as indicated by chemical shift data. Interaction with E1 and subsequent reductive acetylation are not necessarily coupled.
Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy.
Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy.
Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy.
Biochem Biophys Res Commun. 2011 Apr 19;
Authors: Lee DH, Ha JH, Kim Y, Bae KH, Park JY, Choi WS, Yoon HS, Park SG, Park BC, Yi GS, Chi SW
Clusterin (CLU) is a multifunctional glycoprotein that is overexpressed in prostate and breast cancers. Although CLU is known to be involved in the regulation...
nmrlearner
Journal club
0
04-30-2011 12:36 PM
Can Enzyme Engineering Benefit from the Modulation of Protein Motions? Lessons Learned from NMR Relaxation Dispersion Experiments.
Can Enzyme Engineering Benefit from the Modulation of Protein Motions? Lessons Learned from NMR Relaxation Dispersion Experiments.
Can Enzyme Engineering Benefit from the Modulation of Protein Motions? Lessons Learned from NMR Relaxation Dispersion Experiments.
Protein Pept Lett. 2011 Jan 11;
Authors:
Despite impressive progress in protein engineering and design, our ability to create new and efficient enzyme activities remains a laborious and time-consuming endeavor. In the past few years, intricate combinations of rational mutagenesis, directed...
nmrlearner
Journal club
0
01-13-2011 12:00 PM
[NMR paper] Analysis of protein-carbohydrate interaction at the lower size limit of the protein p
Analysis of protein-carbohydrate interaction at the lower size limit of the protein part (15-mer peptide) by NMR spectroscopy, electrospray ionization mass spectrometry, and molecular modeling.
Related Articles Analysis of protein-carbohydrate interaction at the lower size limit of the protein part (15-mer peptide) by NMR spectroscopy, electrospray ionization mass spectrometry, and molecular modeling.
Biochemistry. 2002 Jul 30;41(30):9707-17
Authors: Siebert HC, Lü SY, Frank M, Kramer J, Wechselberger R, Joosten J, André S, Rittenhouse-Olson K, Roy R, von...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Detection of the protein-protein interaction between cyclic AMP receptor protein and
Detection of the protein-protein interaction between cyclic AMP receptor protein and RNA polymerase, by (13)C-carbonyl NMR.
Related Articles Detection of the protein-protein interaction between cyclic AMP receptor protein and RNA polymerase, by (13)C-carbonyl NMR.
J Biochem. 2001 Jul;130(1):57-61
Authors: Lee TW, Won HS, Park SH, Kyogoku Y, Lee BJ
Cyclic AMP receptor protein (CRP) plays a key role in the transcription regulation of many prokaryotic genes. Upon the binding of cyclic AMP, CRP is allosterically activated, binds to target DNA...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] NMR diffusion and relaxation study of drug-protein interaction.
NMR diffusion and relaxation study of drug-protein interaction.
Related Articles NMR diffusion and relaxation study of drug-protein interaction.
Spectrochim Acta A Mol Biomol Spectrosc. 1999 Aug;55A(9):1897-901
Authors: Luo RS, Liu ML, Mao XA
In this work, NMR diffusion and relaxation measurements are applied to the study of the interaction between the anti-inflammatory drug salicylate and the human serum albumin (HSA) in solutions. The self-diffusion coefficients and the spin-lattice relaxation rates of salicylate are measured as a function...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[Question from NMRWiki Q&A forum] Relaxation editing vr paramagnetic relaxation enhancement experiments - 13C CP-MAS NM
Relaxation editing vr paramagnetic relaxation enhancement experiments - 13C CP-MAS NMR
I am a beginner in NMR spectroscopy and I would like to learn more about relaxation editing experiments vs PRE. A colleague of mine is doing the 13C CP-MAS NMR experim. and he using cellulose II powder, regenerated cellulose and milled reg cellulose. We are interested in C4 resonance of cellulose II, good resolved resonance, to better understand the supramolecular structure of cellulose II. As experiments: long relaxation experiments - PRE with aqueous CuSO4 solution of certain concentration, does the...
nmrlearner
News from other NMR forums
0
10-15-2010 05:16 PM
Protein-ice interaction of an antifreeze protein observed with solid-state NMR [Chemi
Protein-ice interaction of an antifreeze protein observed with solid-state NMR
Siemer, A. B., Huang, K.-Y., McDermott, A. E....
Date: 2010-10-12
NMR on frozen solutions is an ideal method to study fundamental questions of macromolecular hydration, because the hydration shell of many biomolecules does not freeze together with bulk solvent. In the present study, we present previously undescribed NMR methods to study the interactions of proteins with their hydration shell and the ice lattice in frozen solution. We applied these methods to compare solvent interaction of an ice-binding...
nmrlearner
Journal club
0
10-13-2010 04:10 AM
[NMR paper] Demonstration of protein-protein interaction specificity by NMR chemical shift mappin
Demonstration of protein-protein interaction specificity by NMR chemical shift mapping.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Demonstration of protein-protein interaction specificity by NMR chemical shift mapping.
Protein Sci. 1997 Dec;6(12):2624-7
Authors: Rajagopal P, Waygood EB, Reizer J, Saier MH, Klevit RE
...