Related ArticlesProtein NMR spin trapping with [methyl-13C(3)]-MNP: application to the tyrosyl radical of equine myoglobin.
Free Radic Biol Med. 2001 Aug 1;31(3):383-90
Authors: Bose-Basu B, DeRose EF, Chen YR, Mason RP, London RE
Direct spin trapping studies of protein radical adducts are limited as a consequence of the long rotational correlation times and consequent broadening of the ESR resonances. It can be difficult to determine both the nature and number of adduct species present. NMR detection of reduced spin adducts represents an alternate approach which, however, is subject to the limitations of lower sensitivity and a limited capability for isolating the resonances arising from the reduced adduct from other chemistry involving the spin trap. In the present study, we have utilized [methyl-13C(3)]-MNP for the detection and analysis of tyrosyl spin adducts formed as a result of exposure of equine myoglobin to hydrogen peroxide. The methyl-13C label allows high detection sensitivity in two dimensions, narrow line widths and most significantly, removal by dialysis of unreacted spin trap as well as any nonprotein derivatives that may form. For equine myoglobin, it is found that adduct formation involves a single residue-Tyr-103 and further that adduct formation occurs at the C-3 carbon of the amino acid. HMQC-NOESY experiments further revealed the proximity of the labeled methyl groups to both the three aromatic tyrosyl protons as well as the aromatic protons of the nearby Phe-106 residue.
Water proton spin saturation affects measured protein backboneN spin relaxation rates
Water proton spin saturation affects measured protein backboneN spin relaxation rates
Publication year: 2011
Source: Journal of Magnetic Resonance, Available online 1 October 2011</br>
Kang*Chen, Nico*Tjandra</br>
Protein backboneN NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses....
nmrlearner
Journal club
0
10-02-2011 08:25 AM
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy
Abstract Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to ~1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic...
nmrlearner
Journal club
0
09-26-2011 06:42 AM
Understanding the radical mechanism of lipoxygenases using 31P NMR spin trapping.
Understanding the radical mechanism of lipoxygenases using 31P NMR spin trapping.
Understanding the radical mechanism of lipoxygenases using 31P NMR spin trapping.
Bioorg Med Chem. 2011 May 1;19(9):3022-8
Authors: Zoia L, Perazzini R, Crestini C, Argyropoulos DS
Abstract
In this paper, we use our quantitative (31)P NMR spin trapping methods, already developed for simple oxygen- and carbon-centered radicals, to understand the radical intermediates generated by enzymatic systems and more specifically lipoxygenases. Our methodology...
nmrlearner
Journal club
0
08-25-2011 04:10 PM
NMR structure of the C-terminal domain of a tyrosyl-tRNA synthetase that functions in group I intron splicing.
NMR structure of the C-terminal domain of a tyrosyl-tRNA synthetase that functions in group I intron splicing.
NMR structure of the C-terminal domain of a tyrosyl-tRNA synthetase that functions in group I intron splicing.
Biochemistry. 2011 Mar 25;
Authors: Paukstelis PJ, Chari N, Lambowitz AM, Hoffman DW
The mitochondrial tyrosyl-tRNA synthetases (mt TyrRSs) of Pezizomycotina fungi are bifunctional proteins that aminoacylate mitochondrial tRNATyr and are structure-stabilizing splicing cofactors for group I introns. Studies with the Neurospora...
nmrlearner
Journal club
0
03-29-2011 07:04 PM
Continuous-wave EPR at 275 GHz: Application to high-spin Fe3+ systems
Continuous-wave EPR at 275 GHz: Application to high-spin Fe3+ systems
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 11 March 2011</br>
G., Mathies , H., Blok , J.A.J.M., Disselhorst , P., Gast , H., van der Meer , ...</br>
The 275 GHz electron-paramagnetic-resonance spectrometer we reported on in 2004 has been equipped with a new probe head, which contains a cavity especially designed for operation in continuous-wave mode. The sensitivity and signal stability that is achieved with this new probe head is illustrated...
nmrlearner
Journal club
0
03-12-2011 05:21 PM
[NMR paper] Amino acid-type edited NMR experiments for methyl-methyl distance measurement in 13C-
Amino acid-type edited NMR experiments for methyl-methyl distance measurement in 13C-labeled proteins.
Related Articles Amino acid-type edited NMR experiments for methyl-methyl distance measurement in 13C-labeled proteins.
J Am Chem Soc. 2004 Aug 11;126(31):9584-91
Authors: Van Melckebeke H, Simorre JP, Brutscher B
New NMR experiments are presented for the measurement of methyl-methyl distances in (13)C-labeled proteins from a series of amino acid-type separated 2D or 3D NOESY spectra. Hadamard amino acid-type encoding of the proximal methyl...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Application of cross-correlated NMR spin relaxation to the zinc-finger protein CRP2(L
Application of cross-correlated NMR spin relaxation to the zinc-finger protein CRP2(LIM2): evidence for collective motions in LIM domains.
Related Articles Application of cross-correlated NMR spin relaxation to the zinc-finger protein CRP2(LIM2): evidence for collective motions in LIM domains.
Biochemistry. 2001 Aug 14;40(32):9596-604
Authors: Schüler W, Kloiber K, Matt T, Bister K, Konrat R
The solution structure of quail CRP2(LIM2) was significantly improved by using an increased number of NOE constraints obtained from a 13C,15N-labeled...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
Simultaneous detection of amide and methyl correlations using a time shared NMR experiment: application to binding epitope mapping
Simultaneous detection of amide and methyl correlations using a time shared NMR experiment: application to binding epitope mapping
Peter Würtz, Olli Aitio, Maarit Hellman and Perttu Permi
Journal of Biomolecular NMR; 2007; 39(2) pp 97 - 105
Abstract:
Simultaneous recording of different NMR parameters is an efficient way to reduce the overall experimental time and speed up structural studies of biological macromolecules. This can especially be beneficial in the case of fast NMR-based drug screening applications or for collecting NOE restraints, where prohibitively long data collection...