Publication date: December 2016 Source:Biochimica et Biophysica Acta (BBA) - Bioenergetics, Volume 1857, Issue 12
Author(s): Fatemeh Azadi Chegeni, Giorgio Perin, Karthick Babu Sai Sankar Gupta, Diana Simionato, Tomas Morosinotto, Anjali Pandit
Photosynthetic thylakoid membranes contain the protein machinery to convert sunlight in chemical energy and regulate this process in changing environmental conditions via interplay between lipid, protein and xanthophyll molecular constituents. This work addresses the molecular effects of zeaxanthin accumulation in thylakoids, which occurs in native systems under high light conditions through the conversion of the xanthophyll violaxanthin into zeaxanthin via the so called xanthophyll cycle. We applied biosynthetic isotope labeling and 13C solid-state NMR spectroscopy to simultaneously probe the conformational dynamics of protein, lipid and xanthophyll constituents of thylakoids isolated from wild type (cw15) and npq2 mutant of the green alga Chlamydomonas reinhardtii, that accumulates zeaxanthin constitutively. Results show differential dynamics of wild type and npq2 thylakoids. Ordered-phase lipids have reduced mobility and mobile-phase lipids have enlarged dynamics in npq2 membranes, together spanning a broader dynamical range. The fraction of ordered lipids is much larger than the fraction of mobile lipids, which explains why zeaxanthin appears to cause overall reduction of thylakoid membrane fluidity. In addition to the ordered lipids, also the xanthophylls and a subset of protein sites in npq2 thylakoids have reduced conformational dynamics. Our work demonstrates the applicability of solid-state NMR spectroscopy for obtaining a microscopic picture of different membrane constituents simultaneously, inside native, heterogeneous membranes. Graphical abstract
[NMR paper] Protein and lipid dynamics in photosynthetic thylakoid membranes investigated by in-situ solid-state NMR.
Protein and lipid dynamics in photosynthetic thylakoid membranes investigated by in-situ solid-state NMR.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Protein and lipid dynamics in photosynthetic thylakoid membranes investigated by in-situ solid-state NMR.
Biochim Biophys Acta. 2016 Sep 11;
Authors: Chegeni FA, Perin G, Gupta KB, Simionato D, Morosinotto T, Pandit A
Abstract
Photosynthetic thylakoid membranes contain the protein...
nmrlearner
Journal club
0
09-22-2016 06:31 AM
[NMR paper] The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy.
The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy.
The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy.
J Biomol NMR. 2015 Jan 6;
Authors: Thomas L, Kahr J, Schmidt P, Krug U, Scheidt HA, Huster D
Abstract
In contrast to the static snapshots provided by protein crystallography, G protein-coupled receptors constitute a group of proteins with highly dynamic...
nmrlearner
Journal club
0
01-06-2015 07:59 PM
The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy
The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy
Abstract
In contrast to the static snapshots provided by protein crystallography, G protein-coupled receptors constitute a group of proteins with highly dynamic properties, which are required in the receptorsâ?? function as signaling molecule. Here, the human neuropeptide Y2 receptor was reconstituted into a model membrane composed of monounsaturated phospholipids and solid-state NMR was used to characterize...
nmrlearner
Journal club
0
01-05-2015 04:06 PM
[NMR paper] The G-Protein-Coupled Neuropeptide Y Receptor Type 2 is Highly Dynamic in Lipid Membranes as Revealed by Solid-State NMR Spectroscopy.
The G-Protein-Coupled Neuropeptide Y Receptor Type 2 is Highly Dynamic in Lipid Membranes as Revealed by Solid-State NMR Spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles The G-Protein-Coupled Neuropeptide Y Receptor Type 2 is Highly Dynamic in Lipid Membranes as Revealed by Solid-State NMR Spectroscopy.
Chemistry. 2014 Mar 13;
Authors: Schmidt P, Thomas L, Müller P, Scheidt HA, Huster D
Abstract
nmrlearner
Journal club
0
03-14-2014 07:34 PM
[NMR paper] Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations.
Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations.
Biochim Biophys Acta. 2013 Feb;1828(2):824-33
Authors: Witte K, Olausson BE, Walrant A, Alves ID, Vogel A
...
nmrlearner
Journal club
0
04-05-2013 10:53 AM
[NMR paper] Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy.
Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy.
PLoS One. 2012;7(10):e47745
Authors: Bertelsen K,...
nmrlearner
Journal club
0
04-02-2013 07:23 PM
In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State Magic-Angle-Spinning NMR
In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State Magic-Angle-Spinning NMR
Riqiang Fu, Xingsheng Wang, Conggang Li, Adriana N. Santiago-Miranda, Gary J. Pielak and Fang Tian
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja204062v/aop/images/medium/ja-2011-04062v_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja204062v
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/BuOPwKpaHdw
nmrlearner
Journal club
0
07-27-2011 11:24 AM
In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State MAS NMR.
In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State MAS NMR.
In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State MAS NMR.
J Am Chem Soc. 2011 Jul 21;
Authors: Fu R, Wang X, Li C, Santiago-Miranda AN, Pielak GJ, Tian F
The feasibility of using solid state MAS NMR for in situ structural characterization of the LR11 (sorLA) transmembrane domain in native Escherichia coli (E. coli) membranes is presented. LR11 interacts with...