BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 10-05-2010, 12:11 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Protein-ice interaction of an antifreeze protein observed with solid-state NMR.

Protein-ice interaction of an antifreeze protein observed with solid-state NMR.

Related Articles Protein-ice interaction of an antifreeze protein observed with solid-state NMR.

Proc Natl Acad Sci U S A. 2010 Sep 30;

Authors: Siemer AB, Huang KY, McDermott AE

NMR on frozen solutions is an ideal method to study fundamental questions of macromolecular hydration, because the hydration shell of many biomolecules does not freeze together with bulk solvent. In the present study, we present previously undescribed NMR methods to study the interactions of proteins with their hydration shell and the ice lattice in frozen solution. We applied these methods to compare solvent interaction of an ice-binding type III antifreeze protein (AFP III) and ubiquitin a non-ice-binding protein in frozen solution. We measured (1)H-(1)H cross-saturation and cross-relaxation to provide evidence for a molecular contact surface between ice and AFP III at moderate freezing temperatures of -35Â*°C. This phenomenon is potentially unique for AFPs because ubiquitin shows no such cross relaxation or cross saturation with ice. On the other hand, we detected liquid hydration water and strong water-AFP III and water-ubiquitin cross peaks in frozen solution using relaxation filtered (2)H and HETCOR spectra with additional (1)H-(1)H mixing. These results are consistent with the idea that ubiquitin is surrounded by a hydration shell, which separates it from the bulk ice. For AFP III, the water cross peaks indicate that only a portion of its hydration shell (i.e., at the ice-binding surface) is in contact with the ice lattice. The rest of AFP III's hydration shell behaves similarly to the hydration shell of non-ice-interacting proteins such as ubiquitin and does not freeze together with the bulk water.

PMID: 20884853 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils. Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils. Bioorg Med Chem. 2011 Aug 27; Authors: Masuda Y, Fukuchi M, Yatagawa T, Tada M, Takeda K, Irie K, Akagi KI, Monobe Y, Imazawa T, Takegoshi K Abstract Aggregation of 42-residue amyloid ?-protein (A?42) plays a pivotal role in the etiology of Alzheimer's disease (AD). Curcumin, the yellow pigment in the rhizome of turmeric, attracts...
nmrlearner Journal club 0 09-20-2011 03:10 PM
Collagen atomic scale molecular disorder in ochronotic cartilage from an alkaptonuria patient, observed by solid state NMR.
Collagen atomic scale molecular disorder in ochronotic cartilage from an alkaptonuria patient, observed by solid state NMR. Collagen atomic scale molecular disorder in ochronotic cartilage from an alkaptonuria patient, observed by solid state NMR. J Inherit Metab Dis. 2011 Jul 7; Authors: Chow WY, Taylor AM, Reid DG, Gallagher JA, Duer MJ In pilot studies of the usefulness of solid state nuclear magnetic resonance spectroscopy in characterizing chemical and molecular structural effects of alkaptonuria on connective tissue, we have obtained...
nmrlearner Journal club 0 07-08-2011 05:21 PM
Solid-state photo-CIDNP effect observed in phototropin LOV1-C57S by (13)C magic-angle spinning NMR spectroscopy.
Solid-state photo-CIDNP effect observed in phototropin LOV1-C57S by (13)C magic-angle spinning NMR spectroscopy. Solid-state photo-CIDNP effect observed in phototropin LOV1-C57S by (13)C magic-angle spinning NMR spectroscopy. J Am Chem Soc. 2010 Nov 10;132(44):15542-3 Authors: Thamarath SS, Heberle J, Hore PJ, Kottke T, Matysik J Until now, the solid-state photo-CIDNP effect, discovered in 1994 by Zysmilich and McDermott, has been observed selectively in photosynthetic systems. Here we present the first observation of this effect in a...
nmrlearner Journal club 0 03-02-2011 11:54 AM
NMR characterizations of the ice binding surface of an antifreeze protein.
NMR characterizations of the ice binding surface of an antifreeze protein. NMR characterizations of the ice binding surface of an antifreeze protein. PLoS One. 2010;5(12):e15682 Authors: Hong J, Hu Y, Li C, Jia Z, Xia B, Jin C Antifreeze protein (AFP) has a unique function of reducing solution freezing temperature to protect organisms from ice damage. However, its functional mechanism is not well understood. An intriguing question concerning AFP function is how the high selectivity for ice ligand is achieved in the presence of free water of...
nmrlearner Journal club 0 01-07-2011 11:21 PM
[NMR paper] Water-protein hydrogen exchange in the micro-crystalline protein crh as observed by solid state NMR spectroscopy.
Water-protein hydrogen exchange in the micro-crystalline protein crh as observed by solid state NMR spectroscopy. Related Articles Water-protein hydrogen exchange in the micro-crystalline protein crh as observed by solid state NMR spectroscopy. J Biomol NMR. 2005 Jul;32(3):195-207 Authors: Böckmann A, Juy M, Bettler E, Emsley L, Galinier A, Penin F, Lesage A We report site-resolved observation of hydrogen exchange in the micro-crystalline protein Crh. Our approach is based on the use of proton T2' -selective 1H-13C-13C correlation spectra for...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] A solid-state NMR study of protein mobility in lyophilized protein-sugar powders.
A solid-state NMR study of protein mobility in lyophilized protein-sugar powders. Related Articles A solid-state NMR study of protein mobility in lyophilized protein-sugar powders. J Pharm Sci. 2002 Apr;91(4):943-51 Authors: Lam YH, Bustami R, Phan T, Chan HK, Separovic F The molecular mobility of protein in lyophilized lysozyme-sugar systems stored at different relative humidities was studied using solid-state NMR. Relaxation measurements, T(1) of high-frequency (MHz), and T(1rho), of low-frequency (kHz) motions, were performed on lysozyme...
nmrlearner Journal club 0 11-24-2010 08:49 PM
Protein-ice interaction of an antifreeze protein observed with solid-state NMR [Chemi
Protein-ice interaction of an antifreeze protein observed with solid-state NMR Siemer, A. B., Huang, K.-Y., McDermott, A. E.... Date: 2010-10-12 NMR on frozen solutions is an ideal method to study fundamental questions of macromolecular hydration, because the hydration shell of many biomolecules does not freeze together with bulk solvent. In the present study, we present previously undescribed NMR methods to study the interactions of proteins with their hydration shell and the ice lattice in frozen solution. We applied these methods to compare solvent interaction of an ice-binding...
nmrlearner Journal club 0 10-13-2010 04:10 AM
[NMR paper] Interaction of myelin basic protein with single bilayers on a solid support: an NMR,
Interaction of myelin basic protein with single bilayers on a solid support: an NMR, DSC and polarized infrared ATR study. Related Articles Interaction of myelin basic protein with single bilayers on a solid support: an NMR, DSC and polarized infrared ATR study. Biochim Biophys Acta. 1993 Sep 19;1151(2):127-36 Authors: Reinl HM, Bayerl TM The interaction of myelin basic protein (MBP) with single bilayers on a solid support (planar and spherical support) is studied by deuterium nuclear magnetic resonance (2H-NMR), differential scanning...
nmrlearner Journal club 0 08-22-2010 03:01 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:04 PM.


Map