Publication date: Available online 25 July 2017 Source:Solid State Nuclear Magnetic Resonance
Author(s): Diane Cala-De Paepe, Jan Stanek, Kristaps Jaudzems, Kaspars Tars, Loren B. Andreas, Guido Pintacuda
1H-detection in solid-state NMR of proteins has been traditionally combined with deuteration for both resolution and sensitivity reasons, with the optimal level of proton dilution being dependent on MAS rate. Here we present 1H-detected 15N and 13C CP-HSQC spectra on two microcrystalline samples acquired at 60 and 111*kHz MAS and at ultra-high field. We critically compare the benefits of three labeling schemes yielding different levels of proton content in terms of resolution, coherence lifetimes and feasibility of scalar-based 2D correlations under these experimental conditions. We observe unexpectedly high resolution and sensitivity of aromatic resonances in 2D 13C-1H correlation spectra of protonated samples. Ultrafast MAS reduces or even removes the necessity of 1H dilution for high-resolution 1H-detection in biomolecular solid-state NMR. It yields 15N,1H and 13C,1H fingerprint spectra of exceptional resolution for fully protonated samples, with notably superior 1H and 13C lineshapes for side-chain resonances. Graphical abstract
[NMR paper] Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.
Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.
Related Articles Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.
Acc Chem Res. 2017 Mar 29;:
Authors: Zhang R, Mroue KH, Ramamoorthy A
Abstract
Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high...
nmrlearner
Journal club
0
03-30-2017 06:42 PM
[NMR paper] Structure of fully protonated proteins by proton-detected magic-angle spinning NMR.
Structure of fully protonated proteins by proton-detected magic-angle spinning NMR.
Related Articles Structure of fully protonated proteins by proton-detected magic-angle spinning NMR.
Proc Natl Acad Sci U S A. 2016 Aug 3;
Authors: Andreas LB, Jaudzems K, Stanek J, Lalli D, Bertarello A, Le Marchand T, Cala-De Paepe D, Kotelovica S, Akopjana I, Knott B, Wegner S, Engelke F, Lesage A, Emsley L, Tars K, Herrmann T, Pintacuda G
Abstract
Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on...
nmrlearner
Journal club
0
08-05-2016 12:26 PM
[NMR paper] Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
Related Articles Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
J Magn Reson. 2015 Nov 9;261:149-156
Authors: Mote KR, Madhu PK
Abstract
(1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy...
nmrlearner
Journal club
0
11-19-2015 05:22 PM
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies
Publication date: Available online 9 November 2015
Source:Journal of Magnetic Resonance</br>
Author(s): Kaustubh R. Mote, Perunthiruthy K. Madhu</br>
1 H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong 1 H- 1 H dipolar coupled network that...
nmrlearner
Journal club
0
11-10-2015 09:10 AM
[NMR paper] Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling.
Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png Related Articles Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling.
PLoS One. 2015;10(4):e0122714
Authors: Wang S, Parthasarathy S, Nishiyama Y, Endo Y, Nemoto T, Yamauchi K, Asakura T,...
nmrlearner
Journal club
0
04-11-2015 12:04 AM
Recovery of bulk proton magnetization and sensitivity enhancement in ultrafast magic-angle spinning solid-state NMR
From The DNP-NMR Blog:
Recovery of bulk proton magnetization and sensitivity enhancement in ultrafast magic-angle spinning solid-state NMR
A large portion of the magnetization in a CP experiment remains unused after an experiment and different strategies exist to make better use of the proton magnetization. Here the authors show their results of testing 7 different cp schemes. Although not directly related to DNP these techniques are still very valuable to increase the sensitivity of an NMR experiment especially in combination with DNP.
nmrlearner
News from NMR blogs
0
03-30-2015 06:04 PM
Sensitivity and resolution of proton detected spectra of a deuterated protein at 40 and 60Â*kHz magic-angle-spinning
Sensitivity and resolution of proton detected spectra of a deuterated protein at 40 and 60Â*kHz magic-angle-spinning
Abstract
The use of small rotors capable of very fast magic-angle spinning (MAS) in conjunction with proton dilution by perdeuteration and partial reprotonation at exchangeable sites has enabled the acquisition of resolved, proton detected, solid-state NMR spectra on samples of biological macromolecules. The ability to detect the high-gamma protons, instead of carbons or nitrogens, increases sensitivity. In order to achieve...
nmrlearner
Journal club
0
02-08-2015 02:49 PM
[NMR paper] Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
J Am Chem Soc. 2014 Aug 7;
Authors: Barbet-Massin E, Pell AJ, Retel J, Andreas LB, Jaudzems K, Franks WT, Nieuwkoop AJ, Hiller M, Higman VA, Guerry P, Bertarello A, Knight MJ, Felletti M, Le Marchand T, Kotelovica S, Akopjana I, Tars K, Stoppini M, Bellotti V, Bolognesi M, Ricagno S, Chou JJ, Griffin RG, Oschkinat H, Lesage A, Emsley L, Herrmann T, Pintacuda G
Abstract
...