BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-25-2014, 11:49 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,791
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Protein catabolism and high lipid metabolism associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses.

Protein catabolism and high lipid metabolism associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses.

Related Articles Protein catabolism and high lipid metabolism associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses.

PLoS One. 2014;9(3):e90730

Authors: Le Moyec L, Robert C, Triba MN, Billat VL, Mata X, Schibler L, Barrey E

Abstract
During long distance endurance races, horses undergo high physiological and metabolic stresses. The adaptation processes involve the modulation of the energetic pathways in order to meet the energy demand. The aims were to evaluate the effects of long endurance exercise on the plasma metabolomic profiles and to investigate the relationships with the individual horse performances. The metabolomic profiles of the horses were analyzed using the non-dedicated methodology, NMR spectroscopy and statistical multivariate analysis. The advantage of this method is to investigate several metabolomic pathways at the same time in a single sample. The plasmas were obtained before exercise (BE) and post exercise (PE) from 69 horses competing in three endurance races at national level (130-160 km). Biochemical assays were also performed on the samples taken at PE. The proton NMR spectra were compared using the supervised orthogonal projection on latent structure method according to several factors. Among these factors, the race location was not significant whereas the effect of the race exercise (sample BE vs PE of same horse) was highly discriminating. This result was confirmed by the projection of unpaired samples (only BE or PE sample of different horses). The metabolomic profiles proved that protein, energetic and lipid metabolisms as well as glycoproteins content are highly affected by the long endurance exercise. The BE samples from finisher horses could be discriminated according to the racing speed based on their metabolomic lipid content. The PE samples could be discriminated according to the horse ranking position at the end of the race with lactate as unique correlated metabolite. As a conclusion, the metabolomic profiles of plasmas taken before and after the race provided a better understanding of the high energy demand and protein catabolism pathway that could expose the horses to metabolic disorders.


PMID: 24658361 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin.
NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin. Related Articles NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin. J Magn Reson. 2013 Dec 12;239C:34-43 Authors: Jupin M, Michiels PJ, Girard FC, Spraul M, Wijmenga SS Abstract Metabolite profiling by NMR of body fluids is increasingly used to successfully differentiate patients...
nmrlearner Journal club 0 01-01-2014 03:05 PM
[NMR paper] NMR Metabolomics Profiling of Blood Plasma Mimics shows that Medium- and Long-chain Fatty Acids Differently Release Metabolites from Human Serum Albumin
NMR Metabolomics Profiling of Blood Plasma Mimics shows that Medium- and Long-chain Fatty Acids Differently Release Metabolites from Human Serum Albumin Publication date: Available online 12 December 2013 Source:Journal of Magnetic Resonance</br> Author(s): M.D. Jupin , P.J. Michiels , F.C. Girard , M. Spraul , S.S. Wijmenga</br> Metabolite profiling by NMR of body fluids is increasingly used to successfully differentiate patients from healthy individuals. Metabolites and their concentrations are direct reporters of body biochemistry. However, in blood plasma...
nmrlearner Journal club 0 12-12-2013 11:39 PM
[NMR paper] Efficient long-distance NMR-PRE and EPR-DEER restraints for two-domain protein structure determination.
Efficient long-distance NMR-PRE and EPR-DEER restraints for two-domain protein structure determination. Related Articles Efficient long-distance NMR-PRE and EPR-DEER restraints for two-domain protein structure determination. Protein Cell. 2013 Nov 27; Authors: Wu K, Shi C, Li J, Wang H, Shi P, Chen L, Wu F, Xiong Y, Tian C PMID: 24282082
nmrlearner Journal club 0 11-28-2013 05:18 PM
Lipid Properties Changed With Exercise, Metformin - MedPage Today
<img alt="" height="1" width="1" /> Lipid Properties Changed With Exercise, Metformin MedPage Today They measured lipoprotein subfraction size, density, and concentration via nuclear magnetic resonance and density gradient ultracentrifugation at baseline and at 1 year. Using both of these techniques together "provides an uncommon opportunity to ... and more &raquo; Lipid Properties Changed With Exercise, Metformin - MedPage Today More...
nmrlearner Online News 0 08-27-2013 11:10 PM
[NMR paper] NMR-based metabolomics and breath studies show lipid and protein catabolism during low dose chronic T1 AM treatment.
NMR-based metabolomics and breath studies show lipid and protein catabolism during low dose chronic T1 AM treatment. Related Articles NMR-based metabolomics and breath studies show lipid and protein catabolism during low dose chronic T1 AM treatment. Obesity (Silver Spring). 2013 Mar 20; Authors: Haviland JA, Reiland H, Butz DE, Tonelli M, Porter WP, Zucchi R, Scanlan TS, Chiellini G, Assadi-Porter FM Abstract OBJECTIVE: 3-iodothyronamine (T1 AM), an analog of thyroid hormone,is a recently discovered fast-acting endogenous metabolite. High...
nmrlearner Journal club 0 03-21-2013 02:58 PM
Record long-distance relationships in solid-state protein NMR - spectroscopyNOW.com (blog)
Record long-distance relationships in solid-state protein NMR - spectroscopyNOW.com (blog) <img alt="" height="1" width="1" /> Record long-distance relationships in solid-state protein NMR spectroscopyNOW.com (blog) A novel pulse sequence has extended the length of 13C-13C interactions in proteins in solid-state NMR spectroscopy up to 9.6Ã?, the longest probed in proteins to date. Scientists in China, Japan and France worked together to devise the recoupling ... Read here
nmrlearner Online News 0 11-20-2012 04:30 PM
Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.
Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy. Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy. J Am Chem Soc. 2011 Mar 24; Authors: Linser R, Bardiaux B, Higman V, Fink U, Reif B Magic-angle spinning (MAS) solid-state NMR becomes an increasingly important tool for the determination of structures of membrane...
nmrlearner Journal club 0 03-26-2011 07:00 PM
Structure Calculation from Unambiguous Long-Range Amide and Methyl 1H-1H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy
Structure Calculation from Unambiguous Long-Range Amide and Methyl 1H-1H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy Rasmus Linser, Benjamin Bardiaux, Victoria Higman, Uwe Fink and Bernd Reif http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja110222h/aop/images/medium/ja-2010-10222h_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja110222h http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/Dh0EBf8PwcY
nmrlearner Journal club 0 03-24-2011 08:02 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:03 AM.


Map