BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-26-2024, 05:48 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,733
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Proline Peptide Bond Isomerization in Ubiquitin under Folding and Denaturing Conditions by Pressure-Jump NMR

Proline Peptide Bond Isomerization in Ubiquitin under Folding and Denaturing Conditions by Pressure-Jump NMR

Proline isomerization is widely recognized as a kinetic bottleneck in protein folding, amplified for proteins rich in Pro residues. We introduced repeated hydrostatic pressure jumps between native and pressure-denaturing conditions inside an NMR sample cell to study proline isomerization in the pressure-sensitized L50A ubiquitin mutant. Whereas in two unfolded heptapeptides, X-Pro peptide bonds isomerized ca 1.6-fold faster at 1 bar than at 2.5 kbar, for ubiquitin ca eight-fold faster...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[ASAP] Monitoring 15N Chemical Shifts During Protein Folding by Pressure-Jump NMR
Monitoring 15N Chemical Shifts During Protein Folding by Pressure-Jump NMR Cyril Charlier, Joseph M. Courtney, T. Reid Alderson, Philip Anfinrud, Ad Bax https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.8b04833/20180625/images/medium/ja-2018-04833s_0004.gif Journal of the American Chemical Society DOI: 10.1021/jacs.8b04833 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/Wf5C6etrn-c
nmrlearner Journal club 0 06-25-2018 11:22 PM
[NMR paper] Monitoring 15N Chemical Shifts During Protein Folding by Pressure-Jump NMR.
Monitoring 15N Chemical Shifts During Protein Folding by Pressure-Jump NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Monitoring 15N Chemical Shifts During Protein Folding by Pressure-Jump NMR. J Am Chem Soc. 2018 Jun 20;: Authors: Charlier C, Courtney JM, Alderson TR, Anfinrud P, Bax A Abstract Novel pressure-jump NMR hardware permits direct observation of protein NMR spectra during a cyclically repeated protein folding process. While protein...
nmrlearner Journal club 0 06-21-2018 10:11 PM
Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell [Biophysics and Computational Biology]
Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell Cyril Charlier, T. Reid Alderson, Joseph M. Courtney, Jinfa Ying, Philip Anfinrud, Adriaan Bax... Date: 2018-05-01 In general, small proteins rapidly fold on the timescale of milliseconds or less. For proteins with a substantial volume difference between the folded and unfolded states, their thermodynamic equilibrium can be altered by varying the hydrostatic pressure. Using a pressure-sensitized mutant of ubiquitin, we demonstrate that rapidly switching the...
nmrlearner Journal club 0 05-01-2018 10:57 PM
[NMR paper] Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell.
Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell. Related Articles Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell. Proc Natl Acad Sci U S A. 2018 Apr 16;: Authors: Charlier C, Alderson TR, Courtney JM, Ying J, Anfinrud P, Bax A Abstract In general, small proteins rapidly fold on the timescale of milliseconds or less. For proteins with a substantial volume difference between the folded...
nmrlearner Journal club 0 04-19-2018 01:52 PM
[NMR paper] Monitoring Hydrogen Exchange During Protein Folding by Fast Pressure Jump NMR Spectroscopy.
Monitoring Hydrogen Exchange During Protein Folding by Fast Pressure Jump NMR Spectroscopy. Related Articles Monitoring Hydrogen Exchange During Protein Folding by Fast Pressure Jump NMR Spectroscopy. J Am Chem Soc. 2017 Aug 02;: Authors: Alderson TR, Charlier C, Torchia DA, Anfinrud P, Bax A Abstract A method is introduced that permits direct observation of the rates at which backbone amide hydrogens become protected from solvent exchange after rapidly dropping the hydrostatic pressure inside the NMR sample cell from denaturing...
nmrlearner Journal club 0 08-03-2017 11:48 AM
Cavities and Cooperativity in the Folding of the Leucine Rich Repeat Protein PP32: A Pressure-Jump Fluorescence and High Pressure NMR Study
Cavities and Cooperativity in the Folding of the Leucine Rich Repeat Protein PP32: A Pressure-Jump Fluorescence and High Pressure NMR Study Publication date: 3 February 2017 Source:Biophysical Journal, Volume 112, Issue 3, Supplement 1</br> Author(s): Kelly A. Jenkins, Martin Fossat, Thuy Dao, Yi Zhang, Zackery White, Doug Barrick, Catherine A. Royer</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-03-2017 09:55 PM
Effect of Internal Cavities on Folding Rates and RoutesRevealed by Real-Time Pressure-Jump NMR Spectroscopy
Effect of Internal Cavities on Folding Rates and RoutesRevealed by Real-Time Pressure-Jump NMR Spectroscopy Julien Roche, Mariano Dellarole, Jose? A. Caro, Douglas R. Norberto, Angel E. Garcia, Bertrand Garcia-Moreno, Christian Roumestand and Catherine A. Royer http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja406682e/aop/images/medium/ja-2013-06682e_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja406682e http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 09-19-2013 02:19 PM
[NMR paper] Effect of Internal Cavities on Folding Rates and Routes Revealed by Real-time Pressure-Jump NMR Spectroscopy.
Effect of Internal Cavities on Folding Rates and Routes Revealed by Real-time Pressure-Jump NMR Spectroscopy. Effect of Internal Cavities on Folding Rates and Routes Revealed by Real-time Pressure-Jump NMR Spectroscopy. J Am Chem Soc. 2013 Aug 30; Authors: Roche J, Dellarole M, Caro JA, Norberto DR, Garcia AE, Garcia-Moreno E B, Roumestand C, Royer CA Abstract The time required to fold proteins usually increases significantly under conditions of high pressure. Taking advantage of this general property of proteins, we combined P-jump...
nmrlearner Journal club 0 08-31-2013 06:56 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:08 AM.


Map