Probing water-accessibility in HET-s(218-289) amyloid fibrils by solid-state NMR.
J Mol Biol. 2010 Nov 18;
Authors: Van Melckebeke H, Schanda P, Gath J, Wasmer C, Verel R, Lange A, Meier BH, Böckmann A
Despite its importance in the context of conformational diseases, structural information is still sparse for protein fibrils. Hydrogen/deuterium exchange measurements of backbone amides allow to identify hydrogen-bonding patterns and reveal pertinent information about the amyloid ?-sheet architecture. However, they provide only little information about the identity of residues exposed to solvent or which are buried inside the fibril core. NMR spectroscopy is a potent method to identify solvent accessible residues in proteins via the observation of polarization transfer between chemically exchanging sidechain protons and water protons. We show here that the combined use of highly deuterated samples and fast magic-angle spinning (MAS) greatly attenuates unwanted spin diffusion and allows identifying polarization exchange with the solvent in a site-specific manner. We apply this measurement protocol to HET-s(218-289) prion fibrils under different conditions, including measurements carried out at physiological pH, where the protofibrils assemble together into thicker fibrils and demonstrate that each protofibril of HET-s(218-289) is surrounded by water, excluding extended dry inter-fibril contacts. We also show that exchangeable side-chain protons inside the hydrophobic core of HET-s(218-289) do not exchange over time intervals of weeks to months. The experiments proposed in this study can provide insight into detailed structural features of amyloid fibrils in general.
PMID: 21094164 [PubMed - as supplied by publisher]
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Bioorg Med Chem. 2011 Aug 27;
Authors: Masuda Y, Fukuchi M, Yatagawa T, Tada M, Takeda K, Irie K, Akagi KI, Monobe Y, Imazawa T, Takegoshi K
Abstract
Aggregation of 42-residue amyloid ?-protein (A?42) plays a pivotal role in the etiology of Alzheimer's disease (AD). Curcumin, the yellow pigment in the rhizome of turmeric, attracts...
nmrlearner
Journal club
0
09-20-2011 03:10 PM
Intermolecular Alignment in Y145Stop Human Prion Protein Amyloid Fibrils Probed by Solid-State NMR Spectroscopy
Intermolecular Alignment in Y145Stop Human Prion Protein Amyloid Fibrils Probed by Solid-State NMR Spectroscopy
Jonathan J. Helmus, Krystyna Surewicz, Marcin I. Apostol, Witold K. Surewicz and Christopher P. Jaroniec
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja206469q/aop/images/medium/ja-2011-06469q_0003.gif
Journal of the American Chemical Society
DOI: 10.1021/ja206469q
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/e9F1wuu5168
nmrlearner
Journal club
0
08-16-2011 03:17 AM
Intermolecular Alignment in Y145Stop Human Prion Protein Amyloid Fibrils Probed by Solid-State NMR Spectroscopy.
Intermolecular Alignment in Y145Stop Human Prion Protein Amyloid Fibrils Probed by Solid-State NMR Spectroscopy.
Intermolecular Alignment in Y145Stop Human Prion Protein Amyloid Fibrils Probed by Solid-State NMR Spectroscopy.
J Am Chem Soc. 2011 Aug 10;
Authors: Helmus JJ, Surewicz K, Apostol MI, Surewicz WK, Jaroniec CP
The Y145Stop mutant of human prion protein, huPrP23-144, has been linked to PrP cerebral amyloid angiopathy, an inherited amyloid disease, and also serves as a valuable in vitro model for investigating the molecular basis of...
Molecular-Level Examination of Cu2+ Binding Structure for Amyloid Fibrils of 40-Residue Alzheimer’s ? by Solid-State NMR Spectroscopy
Molecular-Level Examination of Cu2+ Binding Structure for Amyloid Fibrils of 40-Residue Alzheimer’s ? by Solid-State NMR Spectroscopy
Sudhakar Parthasarathy, Fei Long, Yifat Miller, Yiling Xiao, Dan McElheny, Kent Thurber, Buyong Ma, Ruth Nussinov and Yoshitaka Ishii
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1072178/aop/images/medium/ja-2010-072178_0006.gif
Journal of the American Chemical Society
DOI: 10.1021/ja1072178
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA ...
nmrlearner
Journal club
0
02-22-2011 11:06 PM
Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy.
Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy.
Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy.
J Am Chem Soc. 2010 Oct 6;132(39):13765-75
Authors: Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Böckmann A, Meier BH
We present a strategy to solve the high-resolution structure of amyloid fibrils by solid-state NMR and use it to determine the atomic-resolution structure of the prion domain of the fungal prion HET-s...
nmrlearner
Journal club
0
01-21-2011 12:00 PM
[NMR paper] Probing solvent accessibility of transthyretin amyloid by solution NMR spectroscopy.
Probing solvent accessibility of transthyretin amyloid by solution NMR spectroscopy.
Related Articles Probing solvent accessibility of transthyretin amyloid by solution NMR spectroscopy.
J Biol Chem. 2004 Feb 13;279(7):5699-707
Authors: Olofsson A, Ippel JH, Wijmenga SS, Lundgren E, Ohman A
The human plasma protein transthyretin (TTR) may form fibrillar protein deposits that are associated with both inherited and idiopathic amyloidosis. The present study utilizes solution nuclear magnetic resonance spectroscopy, in combination with...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] Probing solvent accessibility of amyloid fibrils by solution NMR spectroscopy.
Probing solvent accessibility of amyloid fibrils by solution NMR spectroscopy.
Related Articles Probing solvent accessibility of amyloid fibrils by solution NMR spectroscopy.
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8648-53
Authors: Ippel JH, Olofsson A, Schleucher J, Lundgren E, Wijmenga SS
Amyloid is the result of an anomalous protein and peptide aggregation, leading to the formation of insoluble fibril deposits. At present, 18 human diseases have been associated with amyloid deposits-e.g., Alzheimer's disease and Prion-transmissible...