Related ArticlesProbing Transient Conformational States of Proteins by Solid-State R1? Relaxation-Dispersion NMR Spectroscopy.
Angew Chem Int Ed Engl. 2014 Mar 18;
Authors: Ma P, Haller JD, Zajakala J, Macek P, Sivertsen AC, Willbold D, Boisbouvier J, Schanda P
Abstract
The function of proteins depends on their ability to sample a variety of states differing in structure and free energy. Deciphering how the various thermally accessible conformations are connected, and understanding their structures and relative energies is crucial in rationalizing protein function. Many biomolecular reactions take place within microseconds to milliseconds, and this timescale is therefore of central functional importance. Here we show that R1? relaxation dispersion experiments in magic-angle-spinning solid-state NMR spectroscopy make it possible to investigate the thermodynamics and kinetics of such exchange process, and gain insight into structural features of short-lived states.
PMID: 24644028 [PubMed - as supplied by publisher]
[NMR paper] Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR.
Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR.
Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR.
Proc Natl Acad Sci U S A. 2013 Jun 24;
Authors: Libich DS, Fawzi NL, Ying J, Clore GM
Abstract
nmrlearner
Journal club
0
06-27-2013 02:10 PM
Heteronuclear Adiabatic Relaxation Dispersion (HARD) for Quantitative Analysis of Conformational Dynamics in Proteins
Heteronuclear Adiabatic Relaxation Dispersion (HARD) for Quantitative Analysis of Conformational Dynamics in Proteins
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Nathaniel J. Traaseth, Fa-An Chao, Larry R. Masterson, Silvia Mangia, Michael Garwood, Shalom Michaeli, Burckhard Seelig, Gianluigi Veglia</br>
NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R1? and Carr-Purcell-Meiboom-Gill (CPMG) R2 experiments are commonly used to characterize ?sec-msec dynamics, which...
nmrlearner
Journal club
0
04-08-2012 08:53 AM
Probing Transient HoogsteenHydrogen Bonds in CanonicalDuplex DNA Using NMR Relaxation Dispersion and Single-Atom Substitution
Probing Transient HoogsteenHydrogen Bonds in CanonicalDuplex DNA Using NMR Relaxation Dispersion and Single-Atom Substitution
Evgenia N. Nikolova, Federico L. Gottardo and Hashim M. Al-Hashimi
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2117816/aop/images/medium/ja-2011-117816_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja2117816
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/KUfkJD6mGz8
nmrlearner
Journal club
0
02-17-2012 08:50 AM
Microsecond Time-Scale Conformational Exchange in Proteins: Using Long Molecular Dynamics Trajectory To Simulate NMR Relaxation Dispersion Data
Microsecond Time-Scale Conformational Exchange in Proteins: Using Long Molecular Dynamics Trajectory To Simulate NMR Relaxation Dispersion Data
Yi Xue, Joshua M. Ward, Tairan Yuwen, Ivan S. Podkorytov and Nikolai R. Skrynnikov
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja206442c/aop/images/medium/ja-2011-06442c_0001.gif
Journal of the American Chemical Society
DOI: 10.1021/ja206442c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/NvRRKHU2H3k
nmrlearner
Journal club
0
01-28-2012 05:27 AM
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
J Biomol NMR. 2011 Mar 18;
Authors: Bouvignies G, Vallurupalli P, Cordes MH, Hansen DF, Kay LE
A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated 'invisible' protein states that exchange...
nmrlearner
Journal club
0
03-23-2011 05:41 PM
Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy
Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy
Abstract A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated â??invisibleâ?? protein states that exchange with a â??visibleâ?? ground state on the millisecond time-scale. The utility of the approach is demonstrated with an application to an I58D mutant of the Pfl6 Cro protein that undergoes exchange between the native, folded state and a cold...
nmrlearner
Journal club
0
03-22-2011 07:32 PM
Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples
Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples
Patrik Lundström, D. Flemming Hansen and Lewis E. Kay
Journal of Biomolecular NMR; 2008; 42(1); pp 35 - 47
Abstract: Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for quantifying chemical shifts of excited protein states. For many applications of the technique that involve the measurement of relaxation rates of carbon...
Abe
Journal club
0
09-21-2008 11:36 PM
Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states
Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states
D. Flemming Hansen, Pramodh Vallurupalli and Lewis E. Kay
Journal of Biomolecular NMR; 2008; 41(3); pp 113 - 120
Abstract:
Currently the main focus of structural biology is the determination of static three-dimensional representations of biomolecules that for the most part correspond to low energy (ground state) conformations. However, it is becoming increasingly well recognized that higher energy structures often play important roles in function as well. Because these conformers...