Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Angew Chem Int Ed Engl. 2013 Feb 28;
Authors: Vallurupalli P, Kay LE
Abstract
Seeing the invisible: A 13 CO NMR chemical exchange saturation transfer (CEST) experiment for the study of "invisible" excited protein states with lifetimes on the order of 5-50 ms has been developed. The 13 CO chemical shifts together with those obtained from fits of 15 N CEST profiles establish that the A39G FF domain folds via a similar compact intermediate (I) as the wild-type protein (F and U=native and unfolded states).
PMID: 23450751 [PubMed - as supplied by publisher]
[NMR thesis] I. Quantum-mechanical chemical exchange. II. NMR of semiconductors
I. Quantum-mechanical chemical exchange. II. NMR of semiconductors
Kurur, Narayanan Damodaran (1992) I. Quantum-mechanical chemical exchange. II. NMR of semiconductors. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechTHESIS:09022011-090934651
More...
nmrlearner
NMR theses
0
09-02-2011 07:31 PM
[U. of Ottawa NMR Facility Blog] Saturation Transfer and Exchange
Saturation Transfer and Exchange
Exchange processes that occur on the NMR time scale affect the NMR line shapes and can be studied by line shape analysis. If the exchange process is slow on the NMR time scale, one can employ EXSY or inversion transfer methods to study the exchange. An alternative to these is the saturation transfer technique. In this method, one of the slowly exchanging resonances (A) is saturated with low power CW irradiation and the effect on the intensity of the resonance of the exchange partner (B) is monitored. If there is exchange between A and B during the period of...
nmrlearner
News from NMR blogs
0
08-03-2011 01:00 AM
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups
Abstract A new pulse sequence is presented for the measurement of relaxation dispersion profiles quantifying millisecond time-scale exchange dynamics of side-chain carbonyl groups in uniformly 13C labeled proteins. The methodology has been tested using the 87-residue colicin E7 immunity protein, Im7, which is known to fold via a partially structured low populated intermediate that interconverts with the folded, ground state on the millisecond time-scale....
nmrlearner
Journal club
0
06-20-2011 03:31 PM
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups.
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups.
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups.
J Biomol NMR. 2011 Jun 18;
Authors: Hansen AL, Kay LE
A new pulse sequence is presented for the measurement of relaxation dispersion profiles quantifying millisecond time-scale exchange dynamics of side-chain carbonyl groups in uniformly (13)C labeled proteins. The methodology has...
nmrlearner
Journal club
0
06-18-2011 01:10 PM
[Question from NMRWiki Q&A forum] Chemical exchange of Tyr residues - what information can be found about dynamics?
Chemical exchange of Tyr residues - what information can be found about dynamics?
I have an aromatic spectrum of Tyr residues in p53 DNA binding domain. No peaks are seen for Tyr-205 at high temp, but as temp decreases 4 peaks are shown. Tyr-163 and Tyr-236 show two peak each at high temps. How come there aren't 4 peaks? The dynamic processes are said to occur on different time scales. What is the interpretation of this information? How is the core domain of p53 influenced by this? Thanks for your help!
Check if somebody has answered this question on NMRWiki QA forum
nmrlearner
News from other NMR forums
0
04-11-2011 12:48 AM
TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins
TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins
Abstract A TROSY-selected ZZ-exchange experiment is described for measuring slow chemical exchange rates by monitoring the TROSY component of 15N longitudinal magnetization. Application of the proposed pulse sequence to the cadherin 8 N-terminal extracelluar domain demonstrates that enhanced sensitivity is obtained, compared to a previously described TROSY-detected ZZ-exchange sequence (Sahu et al. J Am Chem Soc 129: 13232â??13237, 2007), by preserving the TROSY effect during the mixing...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
[NMR paper] Probing specific lipid-protein interaction by saturation transfer difference NMR spectroscopy.
Probing specific lipid-protein interaction by saturation transfer difference NMR spectroscopy.
Related Articles Probing specific lipid-protein interaction by saturation transfer difference NMR spectroscopy.
J Am Chem Soc. 2005 Sep 28;127(38):13110-1
Authors: Soubias O, Gawrisch K
We studied the interaction of mono- and polyunsaturated phosphatidylcholines with rhodopsin by 1H NMR saturation transfer difference spectroscopy with magic angle spinning (STD-MAS NMR). The results indicate a strong preference for interaction of rhodopsin with the...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
Programs for simulation of lineshape change due to chemical exchange
http://www.shokhirev.com/nikolai/abc/nmrtut/ik1.gif
1) A simple web server for prediction of effect of chemical exchange on NMR lineshapes can be found here.
2) TwoLineNMR and TwoSiteExchange
3) MEXICO from Alex Bain group.