BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 11:14 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Probing the oligomeric state of phospholamban variants in phospholipid bilayers from

Probing the oligomeric state of phospholamban variants in phospholipid bilayers from solid-state NMR measurements of rotational diffusion rates.

Related Articles Probing the oligomeric state of phospholamban variants in phospholipid bilayers from solid-state NMR measurements of rotational diffusion rates.

Biochemistry. 2005 Mar 15;44(10):4055-66

Authors: Hughes E, Clayton JC, Middleton DA

Phospholamban (PLB) is a small transmembrane protein that regulates calcium transport across the sarcoplasmic reticulum (SR) of cardiac cells. PLB self-associates into pentamers within sodium dodecyl sulfate (SDS) micelles, but the oligomeric status of PLB in SR membranes is not known. This work has shown that a mutant of PLB, with all native cysteine residues replaced by alanine (Ala-PLB), runs as a monomer on SDS-PAGE gels, in agreement with previous studies [Karim et al. (2000) Biochemistry 39, 10892-10897]. By contrast, a peptide representing the transmembrane domain of the cysteine-free mutant (TM-Ala-PLB) coexists as pentamers, dimers, and monomers on gels. Solid-state NMR methods were used to examine the size and heterogeneity of Ala-PLB and TM-Ala-PLB labeled with (13)C and (2)H in the transmembrane domain and incorporated into dimyristoylphosphatidylcholine (DMPC) bilayers. Wide line (2)H NMR and (13)C cross-polarization magic-angle spinning (CP-MAS) NMR spectra of Ala-PLB and TM-Ala-PLB revealed two distinct species of each of the proteins in the membranes. In the case of Ala-PLB one species was present initially and a second species emerged after 12 h. Measurements of (1)H-(13)C dipolar couplings for the two species of Ala-PLB showed that the rotational diffusion of one species was relatively rapid, defined by a correlation time (tau(R)) of less than 10 micros, whereas the rotation of the other species was comparatively slow (tau(R) approximately 60 micros). These results suggest that although Ala-PLB runs as a monomer on gels, a mixture of different oligomeric forms of the protein, possibly monomers and pentamers, is present in DMPC bilayers. Caution must therefore be exercised in using SDS-PAGE to draw conclusions about the oligomeric state of PLB variants in lipid bilayers.

PMID: 15751982 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy.
Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy. Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy. Biochim Biophys Acta. 2011 Aug 3; Authors: Gustavsson M, Traaseth NJ, Veglia G In this paper, we analyzed the ground and excited states of phospholamban (PLN), a membrane protein that regulates sarcoplasmic reticulum calcium ATPase (SERCA), in different membrane mimetic environments....
nmrlearner Journal club 0 08-16-2011 01:19 PM
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method [Biophysics and Computational Biology]
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method Verardi, R., Shi, L., Traaseth, N. J., Walsh, N., Veglia, G.... Date: 2011-05-31 Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca2+-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN solved by a hybrid solution and...
nmrlearner Journal club 0 05-31-2011 11:41 PM
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method.
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc Natl Acad Sci U S A. 2011 May 16; Authors: Verardi R, Shi L, Traaseth NJ, Walsh N, Veglia G Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed...
nmrlearner Journal club 0 05-19-2011 04:20 AM
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR.
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR. Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR. J Am Chem Soc. 2011 Mar 14; Authors: Yang J, Aslimovska L, Glaubitz C Environmental factors such as temperature, hydration, and lipid bilayer properties are tightly coupled to the dynamics of membrane proteins. So far, site-resolved data visualizing the protein's response to alterations in these factors are rare, and conclusions had to be drawn from dynamic data averaged over the whole protein...
nmrlearner Journal club 0 03-16-2011 04:15 PM
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR Jun Yang, Lubica Aslimovska and Clemens Glaubitz http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109766n/aop/images/medium/ja-2010-09766n_0011.gif Journal of the American Chemical Society DOI: 10.1021/ja109766n http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/VmNlca5pCIw
nmrlearner Journal club 0 03-15-2011 05:56 AM
[NMR paper] Solid-state NMR measurements of the kinetics of the interaction between phospholamban and Ca2+-ATPase in lipid bilayers.
Solid-state NMR measurements of the kinetics of the interaction between phospholamban and Ca2+-ATPase in lipid bilayers. Related Articles Solid-state NMR measurements of the kinetics of the interaction between phospholamban and Ca2+-ATPase in lipid bilayers. Mol Membr Biol. 2005 Jul-Aug;22(4):353-61 Authors: Hughes E, Middleton DA Phospholamban (PLB) is a small transmembrane protein that regulates calcium transport across the sarcoplasmic reticulum (SR) of cardiac cells via a reversible inhibitory interaction with Ca2+-ATPase. In this work...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Investigation of the interaction of myelin basic protein with phospholipid bilayers u
Investigation of the interaction of myelin basic protein with phospholipid bilayers using solid-state NMR spectroscopy. Related Articles Investigation of the interaction of myelin basic protein with phospholipid bilayers using solid-state NMR spectroscopy. Chem Phys Lipids. 2004 Nov;132(1):47-54 Authors: Pointer-Keenan CD, Lee DK, Hallok K, Tan A, Zand R, Ramamoorthy A Interaction of bovine myelin basic protein and its constituent charge isomers (C1-C3) with phospholipid bilayers was studied using solid-state NMR experiments on model...
nmrlearner Journal club 0 11-24-2010 10:03 PM
Lipid-Protein Correlations in Nanoscale Phospholipid Bilayers by Solid-State NMR.
Lipid-Protein Correlations in Nanoscale Phospholipid Bilayers by Solid-State NMR. Lipid-Protein Correlations in Nanoscale Phospholipid Bilayers by Solid-State NMR. Biochemistry. 2010 Aug 30; Authors: Kijac A, Shih AY, Nieuwkoop AJ, Schulten K, Sligar SG, Rienstra CM Nanodiscs are an example of discoidal nanoscale lipid/protein particles that have been extremely useful for the biochemical and biophysical characterization of membrane proteins. They are discoidal lipid bilayer fragments encircled and stabilized by two amphipathic helical...
nmrlearner Journal club 0 09-02-2010 03:58 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:23 PM.


Map