Noncovalent interactions are the basis for a large number of chemical and biological molecular-recognition processes, such as those occurring in supramolecular chemistry, catalysis, solid-state reactions in mechanochemistry, protein folding, protein-nucleic acid binding, and biomolecular phase separation processes. In this perspective article, some recent developments in probing noncovalent interactions by proton-detected solid-state Nuclear Magnetic Resonance (NMR) spectroscopy at Magic-Angle...
[NMR paper] Nuclear spin diffusion under fast magic-angle spinning in solid-state NMR
Nuclear spin diffusion under fast magic-angle spinning in solid-state NMR
Solid-state nuclear spin diffusion is the coherent and reversible process through which spin order is transferred via dipolar couplings. With the recent increases in magic-angle spinning (MAS) frequencies and magnetic fields becoming routinely applied in solid-state nuclear magnetic resonance, understanding how the increased 1H resolution obtained affects spin diffusion is necessary for interpretation of several common experiments. To investigate the coherent contributions to spin diffusion with...
More...
nmrlearner
Journal club
0
05-13-2023 02:21 PM
[NMR paper] 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning
1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, ¹H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the ¹H-¹H dipolar couplings, so that a direct detection...
More...
nmrlearner
Journal club
0
05-11-2022 05:44 AM
[NMR paper] Decoherence optimized tilted-angle cross polarization: A novel concept for sensitivity-enhanced solid-state NMR using ultra-fast magic angle spinning.
Decoherence optimized tilted-angle cross polarization: A novel concept for sensitivity-enhanced solid-state NMR using ultra-fast magic angle spinning.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/https:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Decoherence optimized tilted-angle cross polarization: A novel concept for sensitivity-enhanced solid-state NMR using ultra-fast magic angle spinning.
J Magn Reson. 2020 Oct 27;322:106857
Authors: Matsunaga T, Matsuda I, Yamazaki T, Ishii Y
Abstract
...
nmrlearner
Journal club
0
11-24-2020 08:25 PM
[NMR paper] Setting the magic angle for fast magic-angle spinning probes
Setting the magic angle for fast magic-angle spinning probes
Publication date: August 2018
Source: Journal of Magnetic Resonance, Volume 293
Author(s): Susanne Penzel, Albert A. Smith, Matthias Ernst, Beat H. Meier
Abstract
nmrlearner
Journal club
0
07-06-2018 09:40 AM
[NMR paper] Setting the magic angle for fast magic-angle spinning probes
Setting the magic angle for fast magic-angle spinning probes
Publication date: Available online 15 June 2018
Source:Journal of Magnetic Resonance</br>
Author(s): Susanne Penzel, Albert A. Smith, Matthias Ernst, Beat H. Meier</br>
Fast magic-angle spinning, coupled with 1H detection is a powerful method to improve spectral resolution and signal to noise in solid-state NMR spectra. Commercial probes now provide spinning frequencies in excess of 100 kHz. Then, one has sufficient resolution in the 1H dimension to directly detect protons, which have a gyromagnetic...
nmrlearner
Journal club
0
06-15-2018 07:18 PM
[NMR paper] Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy.
Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy.
Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy.
Acc Chem Res. 2013 Feb 13;
Authors: Yan S, Suiter CL, Hou G, Zhang H, Polenova T
Abstract
In living organisms, biological molecules often organize into multicomponent complexes. Such assemblies consist of various proteins and carry out essential functions, ranging from cell division, transport, and energy transduction to catalysis, signaling, and viral...
nmrlearner
Journal club
0
02-14-2013 02:37 PM
[NMR paper] Probing membrane protein orientation and structure using fast magic-angle-spinning so
Probing membrane protein orientation and structure using fast magic-angle-spinning solid-state NMR.
Related Articles Probing membrane protein orientation and structure using fast magic-angle-spinning solid-state NMR.
J Biomol NMR. 2004 Nov;30(3):253-65
Authors: Andronesi OC, Pfeifer JR, Al-Momani L, Ozdirekcan S, Rijkers DT, Angerstein B, Luca S, Koert U, Killian JA, Baldus M
One and two-dimensional solid-state NMR experiments are discussed that permit probing local structure and overall molecular conformation of membrane-embedded polypeptides...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] Probing molecular interfaces using 2D magic-angle-spinning NMR on protein mixtures wi
Probing molecular interfaces using 2D magic-angle-spinning NMR on protein mixtures with different uniform labeling.
Related Articles Probing molecular interfaces using 2D magic-angle-spinning NMR on protein mixtures with different uniform labeling.
J Am Chem Soc. 2004 Nov 17;126(45):14746-51
Authors: Etzkorn M, Böckmann A, Lange A, Baldus M
A general NMR strategy to directly study molecular interfaces under magic angle spinning is introduced. The approach is based on the spectroscopic analysis of uniformly, but heterogeneously, labeled...