BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-12-2024, 07:32 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,791
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Probing Noncovalent Interactions by Fast Magic-Angle Spinning NMR at 100 kHz and More

Probing Noncovalent Interactions by Fast Magic-Angle Spinning NMR at 100 kHz and More

Noncovalent interactions are the basis for a large number of chemical and biological molecular-recognition processes, such as those occurring in supramolecular chemistry, catalysis, solid-state reactions in mechanochemistry, protein folding, protein-nucleic acid binding, and biomolecular phase separation processes. In this perspective article, some recent developments in probing noncovalent interactions by proton-detected solid-state Nuclear Magnetic Resonance (NMR) spectroscopy at Magic-Angle...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Nuclear spin diffusion under fast magic-angle spinning in solid-state NMR
Nuclear spin diffusion under fast magic-angle spinning in solid-state NMR Solid-state nuclear spin diffusion is the coherent and reversible process through which spin order is transferred via dipolar couplings. With the recent increases in magic-angle spinning (MAS) frequencies and magnetic fields becoming routinely applied in solid-state nuclear magnetic resonance, understanding how the increased 1H resolution obtained affects spin diffusion is necessary for interpretation of several common experiments. To investigate the coherent contributions to spin diffusion with... More...
nmrlearner Journal club 0 05-13-2023 02:21 PM
[NMR paper] 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning
1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, ¹H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the ¹H-¹H dipolar couplings, so that a direct detection... More...
nmrlearner Journal club 0 05-11-2022 05:44 AM
[NMR paper] Decoherence optimized tilted-angle cross polarization: A novel concept for sensitivity-enhanced solid-state NMR using ultra-fast magic angle spinning.
Decoherence optimized tilted-angle cross polarization: A novel concept for sensitivity-enhanced solid-state NMR using ultra-fast magic angle spinning. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/https:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Decoherence optimized tilted-angle cross polarization: A novel concept for sensitivity-enhanced solid-state NMR using ultra-fast magic angle spinning. J Magn Reson. 2020 Oct 27;322:106857 Authors: Matsunaga T, Matsuda I, Yamazaki T, Ishii Y Abstract ...
nmrlearner Journal club 0 11-24-2020 08:25 PM
[NMR paper] Setting the magic angle for fast magic-angle spinning probes
Setting the magic angle for fast magic-angle spinning probes Publication date: August 2018 Source: Journal of Magnetic Resonance, Volume 293 Author(s): Susanne Penzel, Albert A. Smith, Matthias Ernst, Beat H. Meier Abstract
nmrlearner Journal club 0 07-06-2018 09:40 AM
[NMR paper] Setting the magic angle for fast magic-angle spinning probes
Setting the magic angle for fast magic-angle spinning probes Publication date: Available online 15 June 2018 Source:Journal of Magnetic Resonance</br> Author(s): Susanne Penzel, Albert A. Smith, Matthias Ernst, Beat H. Meier</br> Fast magic-angle spinning, coupled with 1H detection is a powerful method to improve spectral resolution and signal to noise in solid-state NMR spectra. Commercial probes now provide spinning frequencies in excess of 100 kHz. Then, one has sufficient resolution in the 1H dimension to directly detect protons, which have a gyromagnetic...
nmrlearner Journal club 0 06-15-2018 07:18 PM
[NMR paper] Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy.
Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy. Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy. Acc Chem Res. 2013 Feb 13; Authors: Yan S, Suiter CL, Hou G, Zhang H, Polenova T Abstract In living organisms, biological molecules often organize into multicomponent complexes. Such assemblies consist of various proteins and carry out essential functions, ranging from cell division, transport, and energy transduction to catalysis, signaling, and viral...
nmrlearner Journal club 0 02-14-2013 02:37 PM
[NMR paper] Probing membrane protein orientation and structure using fast magic-angle-spinning so
Probing membrane protein orientation and structure using fast magic-angle-spinning solid-state NMR. Related Articles Probing membrane protein orientation and structure using fast magic-angle-spinning solid-state NMR. J Biomol NMR. 2004 Nov;30(3):253-65 Authors: Andronesi OC, Pfeifer JR, Al-Momani L, Ozdirekcan S, Rijkers DT, Angerstein B, Luca S, Koert U, Killian JA, Baldus M One and two-dimensional solid-state NMR experiments are discussed that permit probing local structure and overall molecular conformation of membrane-embedded polypeptides...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Probing molecular interfaces using 2D magic-angle-spinning NMR on protein mixtures wi
Probing molecular interfaces using 2D magic-angle-spinning NMR on protein mixtures with different uniform labeling. Related Articles Probing molecular interfaces using 2D magic-angle-spinning NMR on protein mixtures with different uniform labeling. J Am Chem Soc. 2004 Nov 17;126(45):14746-51 Authors: Etzkorn M, Böckmann A, Lange A, Baldus M A general NMR strategy to directly study molecular interfaces under magic angle spinning is introduced. The approach is based on the spectroscopic analysis of uniformly, but heterogeneously, labeled...
nmrlearner Journal club 0 11-24-2010 10:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:25 AM.


Map