Nuclear magnetic resonance (NMR) spin relaxation is the most informative approach to experimentally probe the internal dynamics of proteins on the picosecond to nanosecond time scale. At the same time, molecular dynamics (MD) simulations of biological macromolecules are steadily improving through better physical models, enhanced sampling methods, and increased computational power, and they provide exquisite information about flexibility and its role in protein stability and molecular...
[NMR paper] Probing Side-Chain Dynamics in Proteins by NMR Relaxation of Isolated (13)C Magnetization Modes in (13)CH(3) Methyl Groups
Probing Side-Chain Dynamics in Proteins by NMR Relaxation of Isolated (13)C Magnetization Modes in (13)CH(3) Methyl Groups
The dynamics of methyl-bearing side chains in proteins were probed by ^(13)C relaxation measurements of a number of ^(13)C magnetization modes in selectively ^(13)CH(3)-labeled methyl groups of proteins. We first show how ^(13)C magnetization modes in a ^(13)CH(3) spin-system can be isolated using acute-angle ¹H radio-frequency pulses. The parameters of methyl-axis dynamics, a measure of methyl-axis ordering (S(axis)²) and the correlation time of fast local methyl-axis...
nmrlearner
Journal club
0
03-27-2021 02:09 AM
[NMR paper] Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers.
Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/https:--publishing.aip.org-sites-default-files-aippub-NLM-scitationblue.jpg Related Articles Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers.
J Chem Phys. 2020 Feb 28;152(8):084102
Authors: Hoffmann F, Mulder FAA, Schäfer LV
Abstract
The internal dynamics of proteins occurring on time...
nmrlearner
Journal club
0
03-03-2020 11:18 PM
[NMR paper] Side Chain Dynamics of the Trifluoroacetone Cysteine Derivative Characterized by 19F NMR Relaxation and Molecular Dynamics Simulations.
Side Chain Dynamics of the Trifluoroacetone Cysteine Derivative Characterized by 19F NMR Relaxation and Molecular Dynamics Simulations.
Related Articles Side Chain Dynamics of the Trifluoroacetone Cysteine Derivative Characterized by 19F NMR Relaxation and Molecular Dynamics Simulations.
J Phys Chem B. 2019 Apr 11;:
Authors: Rashid S, Lee BL, Wajda B, Spyracopoulos L
Abstract
19F NMR spectroscopy is a powerful tool for the study of the structures, dynamics, and interactions of proteins bearing cysteine residues chemically...
nmrlearner
Journal club
0
04-12-2019 05:25 PM
NMR Relaxation and Molecular Dynamics Simulations of Side Chain Dynamics in Proteins
NMR Relaxation and Molecular Dynamics Simulations of Side Chain Dynamics in Proteins
Publication date: 2 February 2018
Source:Biophysical Journal, Volume 114, Issue 3, Supplement 1</br>
Author(s): Falk Hoffmann, Mengjun Xue, Frans Mulder, Lars Schäfer</br>
</br></br>
</br></br>
More...
nmrlearner
Journal club
0
02-07-2018 03:41 PM
[NMR paper] Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1? NMR Measurements: Application to Protein Backbone Dynamics Measurements.
Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1? NMR Measurements: Application to Protein Backbone Dynamics Measurements.
Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1? NMR Measurements: Application to Protein Backbone Dynamics Measurements.
J Phys Chem B. 2016 Aug 8;
Authors: Kurauskas V, Weber E, Hessel A, Ayala I, Marion D, Schanda P
Abstract
Transverse relaxation rate measurements in MAS solid-state NMR...
nmrlearner
Journal club
0
08-09-2016 02:42 PM
[NMR paper] Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations.
Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations.
Related Articles Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations.
J Phys Chem B. 2014 Oct 28;
Authors: Allnér O, Foloppe N, Nilsson L
Abstract
Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory...
nmrlearner
Journal club
0
10-29-2014 03:51 PM
[NMR paper] Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation.
Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation.
Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation.
Angew Chem Int Ed Engl. 2013 Mar 20;
Authors: Stanek J, Saxena S, Geist L, Konrat R, Ko?mi?ski W
Abstract
Ab ultra-high-resolution NMR experiment for the measurement of intraresidue (1) H(i)-(15) N(i)-(13) C'(i) dipolar-chemical shift anisotropy relaxation interference is employed to extract information about local backbone...
nmrlearner
Journal club
0
03-23-2013 06:36 PM
[NMR paper] Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone
Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone motions.
Related Articles Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone motions.
Angew Chem Int Ed Engl. 2005 May 30;44(22):3394-9
Authors: Lange OF, Grubmüller H, de Groot BL