Related ArticlesProbing the Interaction between cHAVc3 Peptide and the EC1 Domain of E-cadherin using NMR and Molecular Dynamics Simulations.
J Biomol Struct Dyn. 2016 Jan 5;:1-48
Authors: Alaofi A, Farokhi E, Prasasty VD, Anbanandam A, Kuczera K, Siahaan TJ
Abstract
The goal of this work is to probe the interaction between cyclic cHAVc3 peptide and the EC1 domain of human E-cadherin protein. Cyclic cHAVc3 peptide (cyclo(1,6)Ac-CSHAVC-NH2) binds to the EC1 domain as shown by chemical shift perturbations in the 2D (1)H,-(15)N-HSQC NMR spectrum. The molecular dynamics (MD) simulations of the EC1 domain showed folding of the C-terminal tail region into the main head region of the EC1 domain. For cHAVc3 peptide, replica exchange molecular dynamics (REMD) simulations generated five structural clusters of cHAVc3 peptide. Representative structures of cHAVc3 and the EC1 structure from MD simulations were used in molecular docking experiments with NMR-constraints to determine the binding site of the peptide on EC1. The results suggest that cHAVc3 binds to EC1 around residues Y36, S37, I38, I53, F77, S78, H79, and I94. The dissociation constants (Kd values) of cHAVc3 peptide to EC1 were estimated using the NMR chemical shifts data and the estimated Kds are in the range of 0.5 × 10(-5) to 7.0 × 10(-5) M.
PMID: 26728967 [PubMed - as supplied by publisher]
Molecular dynamics simulations on PGLa using NMR orientational constraints
Molecular dynamics simulations on PGLa using NMR orientational constraints
Abstract
NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics...
nmrlearner
Journal club
0
09-11-2015 06:48 AM
[NMR paper] Structure and dynamics of a fusion peptide helical hairpin on the membrane surface: comparison of molecular simulations and NMR.
Structure and dynamics of a fusion peptide helical hairpin on the membrane surface: comparison of molecular simulations and NMR.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Structure and dynamics of a fusion peptide helical hairpin on the membrane surface: comparison of molecular simulations and NMR.
J Phys Chem B. 2014 May 1;118(17):4461-70
...
nmrlearner
Journal club
0
05-13-2015 12:28 AM
[NMR paper] Lipid dynamics studied by calculation of 31P solid-state NMR spectra using ensembles from molecular dynamics simulations.
Lipid dynamics studied by calculation of 31P solid-state NMR spectra using ensembles from molecular dynamics simulations.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Lipid dynamics studied by calculation of 31P solid-state NMR spectra using ensembles from molecular dynamics simulations.
J Phys Chem B. 2014 May 15;118(19):5119-29
Authors: Hansen SK, Vestergaard M, Thøgersen L, Schiøtt B, Nielsen NC, Vosegaard T
Abstract
We present a method to...
nmrlearner
Journal club
0
04-22-2015 03:33 PM
[NMR paper] Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
J Phys Chem B. 2013 Feb 1;
Authors: Camilloni C, Cavalli A, Vendruscolo M
Abstract
It has been recently...
nmrlearner
Journal club
0
02-03-2013 10:19 AM
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.
Biochim Biophys Acta. 2011 Aug;1808(8):2019-30
Authors: Romo TD, Bradney LA, Greathouse DV, Grossfield A
Abstract
One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The...
nmrlearner
Journal club
0
08-19-2011 02:56 PM
Structure and Dynamics of the A?21–30 Peptide from the Interplay of NMR Experiments and Molecular Simulations
Structure and Dynamics of the A?21–30 Peptide from the Interplay of NMR Experiments and Molecular Simulations
Nicolas L. Fawzi, Aaron H. Phillips, Jory Z. Ruscio, Michaeleen Doucleff, David E. Wemmer and Teresa Head-Gordon
Journal of the American Chemical Society
DOI: 10.1021/ja204315n
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/bEQEah_ik60
[NMR paper] Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations.
Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations.
Related Articles Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations.
Biophys J. 2005 Sep;89(3):2113-20
Authors: Heise H, Luca S, de Groot BL, Grubmüller H, Baldus M
An approach is introduced to characterize conformational ensembles of intrinsically unstructured peptides on the atomic level using two-dimensional solid-state NMR data and...