Probing the cooperativity of Thermoplasma acidophilum proteasome core particle gating by NMR spectroscopy.
Proc Natl Acad Sci U S A. 2017 Oct 30;:
Authors: Huang R, Pιrez F, Kay LE
Abstract
The 20S proteasome core particle (20S CP) plays an integral role in cellular homeostasis by degrading proteins no longer required for function. The process is, in part, controlled via gating residues localized to the ends of the heptameric barrel-like CP structure that occlude substrate entry pores, preventing unregulated degradation of substrates that might otherwise enter the proteasome. Previously, we showed that the N-terminal residues of the ?-subunits of the CP from the archaeon Thermoplasma acidophilum are arranged such that, on average, two of the seven termini are localized inside the lumen of the proteasome, thereby plugging the entry pore and functioning as a gate. However, the mechanism of gating remains unclear. Using solution NMR and a labeling procedure in which a series of mixed proteasome rings are prepared such that the percentage of gate-containing subunits is varied, we address the energetics of gating and establish whether gating is a cooperative process involving the concerted action of residues from more than a single protomer. Our results establish that the intrinsic probability of a gate entering the lumen favors the in state by close to 20-fold, that entry of each gate is noncooperative, with the number of gates that can be accommodated inside the lumen a function of the substrate entry pore size and the bulkiness of the gating residues. Insight into the origin of the high affinity for the in state is obtained from spin-relaxation experiments. More generally, our approach provides an avenue for dissecting interactions of individual protomers in homo-oligomeric complexes.
PMID: 29087330 [PubMed - as supplied by publisher]
[NMR images] Home Core Facilities Nuclear Magnetic Resonance Spectroscopy
http://research.nd.edu/assets/53189/300x/center_for_nuclear_magnetic_resonance_new.jpg
26/03/2014 12:45:27 PM GMT
Home Core Facilities Nuclear Magnetic Resonance Spectroscopy
More...
nmrlearner
NMR pictures
0
04-12-2014 03:57 AM
[NMR paper] Fate of Pup inside the Mycobacterium Proteasome Studied by in-Cell NMR.
Fate of Pup inside the Mycobacterium Proteasome Studied by in-Cell NMR.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png Related Articles Fate of Pup inside the Mycobacterium Proteasome Studied by in-Cell NMR.
PLoS One. 2013;8(9):e74576
Authors: Maldonado AY, Burz DS, Reverdatto S, Shekhtman A
Abstract
The Mycobacterium tuberculosis proteasome is required for maximum virulence and to resist killing by the host immune system. The prokaryotic ubiquitin-like protein, Pup-GGE,...
nmrlearner
Journal club
0
09-17-2013 11:36 PM
Measurement of Active Site Ionization Equilibria inthe 670 kDa Proteasome Core Particle Using Methyl-TROSY NMR
Measurement of Active Site Ionization Equilibria inthe 670 kDa Proteasome Core Particle Using Methyl-TROSY NMR
Algirdas Velyvis and Lewis E. Kay
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja403091c/aop/images/medium/ja-2013-03091c_0005.gif
Journal of the American Chemical Society
DOI: 10.1021/ja403091c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/3QzhLO_GfOU
nmrlearner
Journal club
0
05-03-2013 02:24 AM
[NMR paper] pH-Dependent Conformation, Dynamics, and Aromatic Interaction of*the*Gating Tryptophan Residue of the Influenza M2 Proton Channel from*Solid-State NMR.
pH-Dependent Conformation, Dynamics, and Aromatic Interaction of*the*Gating Tryptophan Residue of the Influenza M2 Proton Channel from*Solid-State NMR.
Related Articles pH-Dependent Conformation, Dynamics, and Aromatic Interaction of*the*Gating Tryptophan Residue of the Influenza M2 Proton Channel from*Solid-State NMR.
Biophys J. 2013 Apr 16;104(8):1698-708
Authors: Williams JK, Zhang Y, Schmidt-Rohr K, Hong M
Abstract
The M2 protein of the influenza virus conducts protons into the virion under external acidic pH. The proton selectivity of...
Methyl-TROSY NMR studies of proteasome allostery [Biophysics and Computational Biology]
Methyl-TROSY NMR studies of proteasome allostery
Ruschak, A. M., Kay, L. E....
Date: 2012-12-11
Protein degradation plays a critical role in cellular homeostasis, in regulating the cell cycle, and in the generation of peptides that are used in the immune response. The 20S proteasome core particle (CP), a barrel-like structure consisting of four heptameric protein rings stacked axially on top of each other, is... Read More
PNAS:
Number: 50
nmrlearner
Journal club
0
12-12-2012 08:19 AM
Installation of GROMACS 3.3.1 on Dell Inspiron 6400 with Fedora Core 6, Test 3, Dual Core processor
This is not really a "hard-core NMR topic" but it could be useful for people who try to complement dynamics data from NMR relaxation experiments with MD simulations.
I had really hard time trying to install the newer versions of Gromacs 3.3 and 3.3.1 on my laptop (Dell Inspiron 6400 Dual Core processor) . The laptop used to run Suse 10.1 that was recently replaced with Fedora Core 6 Test 3 (that finally supports Intel integrated mobile 945 video cards). With both OS, Gromacs 3.3.x could be installed, however, its sub-program "genion" failed (the program never ends while consuming 100%...