Probing the Conformationally Excited States of Membrane Proteins via (1)H-detected MAS Solid-State NMR Spectroscopy.
J Phys Chem B. 2017 Apr 13;:
Authors: Gopinath T, Nelson SE, Soller KJ, Veglia G
Abstract
Proteins exist in ensembles of conformational states that interconvert on various motional time scales. High-energy states of proteins, often referred to as conformationally excited states, are sparsely populated and have been found to play an essential role in many biological functions. However, detecting these states is quite difficult for conventional structural techniques. Recent progress in solution NMR spectroscopy made it possible to detect conformationally excited states in soluble proteins and characterize them at high resolution. As for soluble proteins, inte-gral or membrane-associated proteins populate different structural states often modulated by their lipid environment. Solid-state NMR spectroscopy is the method of choice to study mem-brane proteins as it can detect both ground and excited states in their natural lipid environments. In this work, we apply newly developed 1H-detected 15N-HSQC type experiments under moderate magic angle spinning speeds to detect the conformationally excited states of phos-pholamban (PLN), a single-pass cardiac membrane protein that regulates Ca2+ transport across SR membrane. In its unbound state, the cytoplasmic domain of PLN exists in equilibrium be-tween a T state, which is membrane bound and helical, and an R state, which is membrane de-tached and unfolded. The R state is important for regulation of the sarcoplasmic reticulum Ca2+-ATPase, but also for binding to protein kinase A. By hybridizing 1H detected solution and solid-state NMR techniques, it is possible to detect and resolve the amide resonances of the R state of PLN in liquid crystalline lipid bilayers. These new methods can be used to study the confor-mationally excited states of membrane proteins in native-like lipid bilayers.
PMID: 28406633 [PubMed - as supplied by publisher]
[NMR paper] Frontispiece: probing transient conformational States of proteins by solid-state r1? relaxation-dispersion NMR spectroscopy.
Frontispiece: probing transient conformational States of proteins by solid-state r1? relaxation-dispersion NMR spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Frontispiece: probing transient conformational States of proteins by solid-state r1? relaxation-dispersion NMR spectroscopy.
Angew Chem Int Ed Engl. 2014 Apr 22;53(17)
Authors: Ma P, Haller JD, Zajakala J, Macek P, Sivertsen AC, Willbold D, Boisbouvier J,...
nmrlearner
Journal club
0
04-23-2014 06:31 PM
[NMR paper] Probing Transient Conformational States of Proteins by Solid-State R1? Relaxation-Dispersion NMR Spectroscopy.
Probing Transient Conformational States of Proteins by Solid-State R1? Relaxation-Dispersion NMR Spectroscopy.
Related Articles Probing Transient Conformational States of Proteins by Solid-State R1? Relaxation-Dispersion NMR Spectroscopy.
Angew Chem Int Ed Engl. 2014 Mar 18;
Authors: Ma P, Haller JD, Zajakala J, Macek P, Sivertsen AC, Willbold D, Boisbouvier J, Schanda P
Abstract
The function of proteins depends on their ability to sample a variety of states differing in structure and free energy. Deciphering how the various thermally...
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy
Abstract Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the...
nmrlearner
Journal club
0
09-20-2012 06:06 AM
Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy.
Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy.
Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy.
Biochim Biophys Acta. 2011 Aug 3;
Authors: Gustavsson M, Traaseth NJ, Veglia G
In this paper, we analyzed the ground and excited states of phospholamban (PLN), a membrane protein that regulates sarcoplasmic reticulum calcium ATPase (SERCA), in different membrane mimetic environments....
nmrlearner
Journal club
0
08-16-2011 01:19 PM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 20;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner
Journal club
0
04-22-2011 02:00 PM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 14;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner
Journal club
0
04-16-2011 12:29 PM
[NMR paper] Studying excited states of proteins by NMR spectroscopy.
Studying excited states of proteins by NMR spectroscopy.
Related Articles Studying excited states of proteins by NMR spectroscopy.
Nat Struct Biol. 2001 Nov;8(11):932-5
Authors: Mulder FA, Mittermaier A, Hon B, Dahlquist FW, Kay LE
Protein structure is inherently dynamic, with function often predicated on excursions from low to higher energy conformations. For example, X-ray studies of a cavity mutant of T4 lysozyme, L99A, show that the cavity is sterically inaccessible to ligand, yet the protein is able to bind substituted benzenes rapidly....