A probabilistic approach for validating protein NMR chemical shift assignments
Abstract It has been estimated that more than 20% of the proteins in the BMRB are improperly referenced and that about 1% of all chemical shift assignments are mis-assigned. These statistics also reflect the likelihood that any newly assigned protein will have shift assignment or shift referencing errors. The relatively high frequency of these errors continues to be a concern for the biomolecular NMR community. While several programs do exist to detect and/or correct chemical shift mis-referencing or chemical shift mis-assignments, most can only do one, or the other. The one program (SHIFTCOR) that is capable of handling both chemical shift mis-referencing and mis-assignments, requires the 3D structure coordinates of the target protein. Given that chemical shift mis-assignments and chemical shift re-referencing issues should ideally be addressed prior to 3D structure determination, there is a clear need to develop a structure-independent approach. Here, we present a new structure-independent protocol, which is based on using residue-specific and secondary structure-specific chemical shift distributions calculated over small (3â??6 residue) fragments to identify mis-assigned resonances. The method is also able to identify and re-reference mis-referenced chemical shift assignments. Comparisons against existing re-referencing or mis-assignment detection programs show that the method is as good or superior to existing approaches. The protocol described here has been implemented into a freely available Java program called â??Probabilistic Approach for protein Nmr Assignment Validation (PANAV)â?? and as a web server (http://redpoll.pharmacy.ualberta.ca/PANAV) which can be used to validate and/or correct as well as re-reference assigned protein chemical shifts.
Content Type Journal Article
DOI 10.1007/s10858-010-9407-y
Authors
Bowei Wang, Shanghai American School Pudong 201201 San Jia Gang, Pudong, Shanghai Peopleâ??s Republic of China
Yunjun Wang, Mesolight LLC, 4607Â*W 61st St. Little Rock AK 72209 USA
David S. Wishart, University of Alberta Departments of Computing Science and Biological Sciences Edmonton AL T6G 2E8 Canada
Backbone and Ile-?1, Leu, Val Methyl (1)H, (13)C and (15)N NMR chemical shift assignments for human interferon-stimulated gene 15 protein.
Backbone and Ile-?1, Leu, Val Methyl (1)H, (13)C and (15)N NMR chemical shift assignments for human interferon-stimulated gene 15 protein.
Backbone and Ile-?1, Leu, Val Methyl (1)H, (13)C and (15)N NMR chemical shift assignments for human interferon-stimulated gene 15 protein.
Biomol NMR Assign. 2011 May 5;
Authors: Yin C, Aramini JM, Ma LC, Cort JR, Swapna GV, Krug RM, Montelione GT
Human interferon-stimulated gene 15 protein (ISG15), also called ubiquitin cross-reactive protein (UCRP), is the first identified ubiquitin-like protein containing...
nmrlearner
Journal club
0
05-06-2011 12:02 PM
Two-dimensional concurrent HMQC-COSY as an approach for small molecule chemical shift assignment and compound identification
Two-dimensional concurrent HMQC-COSY as an approach for small molecule chemical shift assignment and compound identification
Abstract Chemical shift assignment is the first step toward the structure elucidation of natural products and other chemical compounds. We propose here the use of 2D concurrent HMQC-COSY as an experiment for rapid chemical shift assignment of small molecules. This experiment provides well-dispersed 1Hâ??13C peak patterns that are distinctive for different functional groups plus 1Hâ??1H COSY connectivities that serve to identify adjacent groups. The COSY diagonal...
nmrlearner
Journal club
0
03-09-2011 04:19 AM
[NMR paper] Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
Related Articles Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
J Am Chem Soc. 2005 Sep 7;127(35):12291-305
Authors: Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM
Magic-angle spinning...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Influence of the completeness of chemical shift assignments on NMR structures obtaine
Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment.
Related Articles Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment.
J Struct Funct Genomics. 2003;4(2-3):179-89
Authors: Jee J, Güntert P
Reliable automated NOE assignment and structure calculation on the basis of a largely complete, assigned input chemical shift list and a list of unassigned NOESY cross peaks has recently become feasible for routine NMR protein...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] CAMRA: chemical shift based computer aided protein NMR assignments.
CAMRA: chemical shift based computer aided protein NMR assignments.
Related Articles CAMRA: chemical shift based computer aided protein NMR assignments.
J Biomol NMR. 1998 Oct;12(3):395-405
Authors: Gronwald W, Willard L, Jellard T, Boyko RF, Rajarathnam K, Wishart DS, Sönnichsen FD, Sykes BD
A suite of programs called CAMRA (Computer Aided Magnetic Resonance Assignment) has been developed for computer assisted residue-specific assignments of proteins. CAMRA consists of three units: ORB, CAPTURE and PROCESS. ORB predicts NMR chemical shifts...
nmrlearner
Journal club
0
11-17-2010 11:15 PM
[NMR paper] 1H, 15N, and 13C backbone chemical shift assignments, secondary structure, and magnes
1H, 15N, and 13C backbone chemical shift assignments, secondary structure, and magnesium-binding characteristics of the Bacillus subtilis response regulator, Spo0F, determined by heteronuclear high-resolution NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles 1H, 15N, and 13C backbone chemical shift assignments, secondary structure, and...
chemical shift anisotropy (CSA) in model-free approach
Hi !
I have a quite general question about the value used for the CSA while studying protein dynamics of 15N-1H vectors with model-free approach.
In the litterature, we mainly find two values for the CSA (-160 and -172 ppm).
There is, if I understand well, a link between the bond length and the CSA, but everyone seems to agree about using the same value of 1.02 A which should give rise to a mean S2 of 0.85 for secondary structure when combined to a CSA of -172 ppm. When using a CSA of -160 ppm, the mean S2 for secondary structure should slightly rise up from 0.85.
The manuals for...