BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-22-2020, 09:36 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Principal component analysis for automated classification of 2D spectra and interferograms of protein therapeutics: influence of noise, reconstruction details, and data preparation

Principal component analysis for automated classification of 2D spectra and interferograms of protein therapeutics: influence of noise, reconstruction details, and data preparation

Abstract

Protein therapeutics have numerous critical quality attributes (CQA) that must be evaluated to ensure safety and efficacy, including the requirement to adopt and retain the correct three-dimensional fold without forming unintended aggregates. Therefore, the ability to monitor protein higher order structure (HOS) can be valuable throughout the lifecycle of a protein therapeutic, from development to manufacture. 2D NMR has been introduced as a robust and precise tool to assess the HOS of a protein biotherapeutic. A common use case is to decide whether two groups of spectra are substantially different, as an indicator of difference in HOS. We demonstrate a quantitative use of principal component analysis (PCA) scores to perform this decision-making, and demonstrate the effect of acquisition and processing details on class separation using samples of NISTmAb monoclonal antibody Reference Material subjected to two different oxidative stress protocols. The work introduces an approach to computing similarity from PCA scores based upon the technique of histogram intersection, a method originally developed for retrieval of images from large databases. Results show that class separation can be robust with respect to random noise, reconstruction method, and analysis region selection. By contrast, details such as baseline distortion can have a pronounced effect, and so must be controlled carefully. Since the classification approach can be performed without the need to identify peaks, results suggest that it is possible to use even more efficient measurement strategies that do not produce spectra that can be analyzed visually, but nevertheless allow useful decision-making that is objective and automated.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Assessment of the Higher-Order Structure of Formulated Monoclonal Antibody Therapeutics by 2D Methyl Correlated NMR and Principal Component Analysis.
Assessment of the Higher-Order Structure of Formulated Monoclonal Antibody Therapeutics by 2D Methyl Correlated NMR and Principal Component Analysis. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7388-69-wiley-full-text.png Assessment of the Higher-Order Structure of Formulated Monoclonal Antibody Therapeutics by 2D Methyl Correlated NMR and Principal Component Analysis. Curr Protoc Protein Sci. 2020 Jun;100(1):e105 Authors: Arbogast LW, Delaglio F, Brinson RG, Marino JP Abstract ...
nmrlearner Journal club 0 05-16-2020 02:10 AM
NMR-based fragment screening and lead discovery accelerated by principal component analysis
NMR-based fragment screening and lead discovery accelerated by principal component analysis Abstract Protein-based NMR spectroscopy has proven to be a very robust method for finding fragment leads to protein targets. However, one limitation of protein-based NMR is that the data acquisition and analysis can be time consuming. In order to streamline the scoring of protein-based NMR fragment screening data and the determination of ligand affinities using 2D NMR experiments we have developed a data analysis workflow based on principal component...
nmrlearner Journal club 0 02-29-2020 09:52 PM
Development of a method for reconstruction of crowded NMR spectra from undersampled time-domain data
Development of a method for reconstruction of crowded NMR spectra from undersampled time-domain data Abstract NMR is a unique methodology for obtaining information about the conformational dynamics of proteins in heterogeneous biomolecular systems. In various NMR methods, such as transferred cross-saturation, relaxation dispersion, and paramagnetic relaxation enhancement experiments, fast determination of the signal intensity ratios in the NMR spectra with high accuracy is required for analyses of targets with low yields and stabilities. However,...
nmrlearner Journal club 0 02-14-2015 03:52 PM
[NMR paper] Development of a method for reconstruction of crowded NMR spectra from undersampled time-domain data.
Development of a method for reconstruction of crowded NMR spectra from undersampled time-domain data. Related Articles Development of a method for reconstruction of crowded NMR spectra from undersampled time-domain data. J Biomol NMR. 2015 Feb 13; Authors: Ueda T, Yoshiura C, Matsumoto M, Kofuku Y, Okude J, Kondo K, Shiraishi Y, Takeuchi K, Shimada I Abstract NMR is a unique methodology for obtaining information about the conformational dynamics of proteins in heterogeneous biomolecular systems. In various NMR methods, such as...
nmrlearner Journal club 0 02-14-2015 03:52 PM
[NMR paper] Protein-RNA specificity by high-throughput principal component analysis of NMR spectra.
Protein-RNA specificity by high-throughput principal component analysis of NMR spectra. Related Articles Protein-RNA specificity by high-throughput principal component analysis of NMR spectra. Nucleic Acids Res. 2015 Jan 13; Authors: Collins KM, Oregioni A, Robertson LE, Kelly G, Ramos A Abstract Defining the RNA target selectivity of the proteins regulating mRNA metabolism is a key issue in RNA biology. Here we present a novel use of principal component analysis (PCA) to extract the RNA sequence preference of RNA binding...
nmrlearner Journal club 0 01-15-2015 06:10 PM
Visualizing the principal component of 1H,15N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C
Visualizing the principal component of 1H,15N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C Abstract Laboratories often repeatedly determine the structure of a given protein under a variety of conditions, mutations, modifications, or in a number of states. This approach can be cumbersome and tedious. Given then a database of structures, identifiers, and corresponding 1H,15N-HSQC NMR spectra for homologous proteins, we investigated whether structural information could be ascertained for a new homolog solely from its...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Visualizing the principal component of (1)H, (15)N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C.
Visualizing the principal component of (1)H, (15)N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C. Visualizing the principal component of (1)H, (15)N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C. J Biomol NMR. 2011 Sep;51(1-2):115-22 Authors: Robertson IM, Boyko RF, Sykes BD Abstract Laboratories often repeatedly determine the structure of a given protein under a variety of conditions,...
nmrlearner Journal club 0 09-30-2011 06:00 AM
Visualizing the principal component of (1)H, (15)N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C.
Visualizing the principal component of (1)H, (15)N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C. Visualizing the principal component of (1)H, (15)N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C. J Biomol NMR. 2011 Sep;51(1-2):115-22 Authors: Robertson IM, Boyko RF, Sykes BD Abstract Laboratories often repeatedly determine the structure of a given protein under a variety of conditions,...
nmrlearner Journal club 0 09-30-2011 05:59 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:49 AM.


Map