BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-19-2014, 03:12 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,791
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Practical aspects of NMR signal assignment in larger and challenging proteins.

Practical aspects of NMR signal assignment in larger and challenging proteins.

Related Articles Practical aspects of NMR signal assignment in larger and challenging proteins.

Prog Nucl Magn Reson Spectrosc. 2014 Apr;78C:47-75

Authors: Frueh DP

Abstract
NMR has matured into a technique routinely employed for studying proteins in near physiological conditions. However, applications to larger proteins are impeded by the complexity of the various correlation maps necessary to assign NMR signals. This article reviews the data analysis techniques traditionally employed for resonance assignment and describes alternative protocols necessary for overcoming challenges in large protein spectra. In particular, simultaneous analysis of multiple spectra may help overcome ambiguities or may reveal correlations in an indirect manner. Similarly, visualization of orthogonal planes in a multidimensional spectrum can provide alternative assignment procedures. We describe examples of such strategies for assignment of backbone, methyl, and nOe resonances. We describe experimental aspects of data acquisition for the related experiments and provide guidelines for preliminary studies. Focus is placed on large folded monomeric proteins and examples are provided for 37, 48, 53, and 81kDa proteins.


PMID: 24534088 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Progress in Nuclear Magnetic Resonance Spectroscopy. Practical aspects of NMR signal assignment in larger and challenging proteins
Progress in Nuclear Magnetic Resonance Spectroscopy. Practical aspects of NMR signal assignment in larger and challenging proteins Publication date: Available online 15 December 2013 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Dominique P Frueh</br> NMR has matured into a technique routinely employed for studying proteins in near physiological conditions. However, applications to larger proteins are impeded by the complexity of the various correlation maps necessary to assign NMR signals. This article reviews the data analysis...
nmrlearner Journal club 0 12-15-2013 06:08 PM
Practical aspects of high-sensitivity multidimensional 13C MAS NMR spectroscopy of perdeuterated proteins
Practical aspects of high-sensitivity multidimensional 13C MAS NMR spectroscopy of perdeuterated proteins April 2012 Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 217</br> </br> The double nucleus enhanced recoupling (DONER) experiment employs simultaneous irradiation of protons and deuterons to promote spin diffusion processes in a perdeuterated protein. This results in 4–5times higher sensitivity in 2D 13C–13C correlation experiments as compared to PDSD . Here, a quantitative comparison of PDSD, 1H-DARR, 2H-DARR, and 1H+ 2H DONER has been...
nmrlearner Journal club 0 02-03-2013 10:13 AM
Expanding the utility of NMR restraints with paramagnetic compounds: Background and practical aspects
Expanding the utility of NMR restraints with paramagnetic compounds: Background and practical aspects November 2011 Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 4</br> </br> Graphical abstract
nmrlearner Journal club 0 12-15-2012 09:51 AM
Expanding the utility of NMR restraints with paramagnetic compounds: Background and practical aspects
Expanding the utility of NMR restraints with paramagnetic compounds: Background and practical aspects November 2011 Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 4</br> </br> Graphical abstract
nmrlearner Journal club 0 12-01-2012 06:10 PM
Practical Aspects of High-Sensitivity Multidimensional 13C MAS NMR Spectroscopy of Perdeuterated Proteins
Practical Aspects of High-Sensitivity Multidimensional 13C MAS NMR Spectroscopy of Perdeuterated Proteins Publication year: 2012 Source:Journal of Magnetic Resonance</br> Ümit Akbey, Barth-Jan van Rossum, Hartmut Oschkinat</br> The double nucleus enhanced recoupling (DONER) experiment employs simultaneous irradiation of protons and deuterons to promote spin diffusion processes in a perdeuterated protein. This results in 4-5 times higher sensitivity in 2D 13C-13C correlation experiments as compared to PDSD. Here, a quantitative comparison of PDSD, 1H-DARR, 2H-DARR, and...
nmrlearner Journal club 0 03-09-2012 09:16 AM
Expanding the utility of NMR restraints with paramagnetic compounds: Background and practical aspects
Expanding the utility of NMR restraints with paramagnetic compounds: Background and practical aspects Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 4</br> Julia Koehler, Jens Meiler</br> Graphical Abstract http://ars.sciencedirect.com/content/image/1-s2.0-S0079656511000410-fx1.jpg Graphical abstract Highlights
nmrlearner Journal club 0 03-09-2012 09:16 AM
Practical Aspects of High-Sensitivity MultidimensionalC MAS NMR Spectroscopy of Perdeuterated Proteins
Practical Aspects of High-Sensitivity MultidimensionalC MAS NMR Spectroscopy of Perdeuterated Proteins Publication year: 2012 Source: Journal of Magnetic Resonance, Available online 1 March 2012</br> Ümit*Akbey, Barth-Jan*van Rossum, Hartmut*Oschkinat</br> Thedouble nucleus enhanced recoupling(DONER) experiment employs simultaneous irradiation of protons and deuterons to promote spin diffusion processes in a perdeuterated protein. This results in 4-5 times higher sensitivity in 2DC-C correlation experiments as compared to PDSD.Here, a quantitative comparison of PDSD,H-DARR,H-DARR,...
nmrlearner Journal club 0 03-01-2012 11:03 PM
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion Abstract Two novel 5D NMR experiments (CACONCACO, NCOCANCO) for backbone assignment of disordered proteins are presented. The pulse sequences exploit relaxation properties of the unstructured proteins and combine the advantages of 13C-direct detection, non-uniform sampling, and longitudinal relaxation optimization to maximize the achievable resolution and minimize the experimental time. The pulse sequences were successfully tested on the sample of partially disordered delta...
nmrlearner Journal club 0 03-22-2011 07:32 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:08 AM.


Map