BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-09-2012, 09:16 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Practical Aspects of High-Sensitivity Multidimensional 13C MAS NMR Spectroscopy of Perdeuterated Proteins

Practical Aspects of High-Sensitivity Multidimensional 13C MAS NMR Spectroscopy of Perdeuterated Proteins


Publication year: 2012
Source:Journal of Magnetic Resonance

Ümit Akbey, Barth-Jan van Rossum, Hartmut Oschkinat

The double nucleus enhanced recoupling (DONER) experiment employs simultaneous irradiation of protons and deuterons to promote spin diffusion processes in a perdeuterated protein. This results in 4-5 times higher sensitivity in 2D 13C-13C correlation experiments as compared to PDSD.[1] Here, a quantitative comparison of PDSD, 1H-DARR, 2H-DARR, and 1H+2H DONER has been performed to analyze the influence of spin diffusion on polarization transfer processes. Cross peak buildup curves were analyzed to obtain guidelines for choosing the best experimental parameters. The largest cross peak intensities were observed for the DONER experiments. The fastest build-up rate was observed in the 2H-DARR experiment within a buildup range of ~18-45 ms, whereas values between 24-69 ms are observed for the DONER experiment. Furthermore, the effects of direct excitation and cross polarization (CP) are compared. A comparison between DONER and RFDR experiments reveal ~50% more intense cross peaks in the C?-CO and C?-Calip regions of the 2D 13C-13C DONER spectrum applying proton CP (1H-to-13C). As a parameter determining the S/N in 13C-13C correlation experiments, proton CP efficiency is investigated using deuterated samples with proton/deuterium ratios at 20, 40, and 100% H2O. Sufficiently strong 13C CPMAS signal intensity is observed for such proteins even with very low proton concentration. The effect of proton and/or deuterium decoupling is analyzed at various MAS spinning frequencies. Deuterium decoupling was found most crucial for obtaining high resolution. Long range correlations are readily observed representing distances up to ~6 Ċ by using DONER approach.
Graphical Abstract

Graphical abstract Highlights

? DOuble Nucleus Enhanced Recoupling recovers spin-diffusion in deuterated proteins. ? DONER results in up to ~5 times larger cross-peak intensities compared to PDSD. ? Long range distance restraints are observed up to ~6 Ċ. ? High 13C resolution is only achieved with deuterium scalar-decoupling at MAS ?20kHz. ? Coherent cross-relaxation broadens 13C lines of deuterated protein below 20 kHz MAS.





Source: Journal of Magnetic Resonance
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Practical Aspects of High-Sensitivity MultidimensionalC MAS NMR Spectroscopy of Perdeuterated Proteins
Practical Aspects of High-Sensitivity MultidimensionalC MAS NMR Spectroscopy of Perdeuterated Proteins Publication year: 2012 Source: Journal of Magnetic Resonance, Available online 1 March 2012</br> Ümit*Akbey, Barth-Jan*van Rossum, Hartmut*Oschkinat</br> Thedouble nucleus enhanced recoupling(DONER) experiment employs simultaneous irradiation of protons and deuterons to promote spin diffusion processes in a perdeuterated protein. This results in 4-5 times higher sensitivity in 2DC-C correlation experiments as compared to PDSD.Here, a quantitative comparison of PDSD,H-DARR,H-DARR,...
nmrlearner Journal club 0 03-01-2012 11:03 PM
Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: Implications for Structure and Dynamics
Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: Implications for Structure and Dynamics Publication year: 2012 Source: Journal of Magnetic Resonance, Available online 5 January 2012</br> Bernd*Reif</br> http://www.sciencedirect.com/cache/MiamiImageURL/1-s2.0-S1090780711005969-fx1.sml</br></br></br> Source: Journal of Magnetic Resonance
nmrlearner Journal club 0 01-07-2012 03:12 PM
Expanding the utility of NMR restraints with paramagnetic compounds: Background and practical aspects
Expanding the utility of NMR restraints with paramagnetic compounds: Background and practical aspects Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 27 May 2011</br> Julia, Koehler , Jens, Meiler</br> *Highlights:*? introduction of a lanthanide ion into a protein leads to paramagnetic effects and partial alignment. ? Paramagnetic Relaxation Enhancements (PREs), Residual Dipolar Couplings (RDCs), and Pseudo-Contact Shifts (PCSs), among others, can be measured. ? amplitude of paramagnetic effects...
nmrlearner Journal club 0 05-28-2011 10:54 PM
High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field
High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field Abstract Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-13C,15N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla (1H frequencies of...
nmrlearner Journal club 0 01-09-2011 12:46 PM
Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy
Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy Abstract We present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D2O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both 1H and 15N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for 1Hâ??15N correlations in dipolar coupling based experiments for...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins u
Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins using spin-state selection. Related Articles Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins using spin-state selection. J Am Chem Soc. 2003 Oct 1;125(39):11816-7 Authors: Duma L, Hediger S, Brutscher B, Böckmann A, Emsley L We show that the resolution of homonuclear multidimensional solid-state NMR correlation experiments can be significantly improved using transition selection and spin-state-selective polarization transfer...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] A high-resolution technique for multidimensional NMR spectroscopy.
A high-resolution technique for multidimensional NMR spectroscopy. Related Articles A high-resolution technique for multidimensional NMR spectroscopy. IEEE Trans Biomed Eng. 1998 Jan;45(1):78-86 Authors: Li Y, Razavilar J, Liu KJ In this paper, a scheme for estimating frequencies and damping factors of multidimensional nuclear magnetic resonance (NMR) data is presented, multidimensional NMR data can be modeled as the sum of several multidimensional damped sinusoids. The estimated frequencies and damping factors of multidimensional NMR data...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Multidimensional NMR spectroscopy of DNA-binding proteins: structure and function of
Multidimensional NMR spectroscopy of DNA-binding proteins: structure and function of a transcription factor. Related Articles Multidimensional NMR spectroscopy of DNA-binding proteins: structure and function of a transcription factor. Toxicol Lett. 1995 Dec;82-83:577-89 Authors: Hsu VL, Jia X, Kearns DR The solution structure of a type II DNA-binding protein (DBPII), transcription factor 1 (TF1), has been determined using NMR spectroscopy. A multidimensional, heteronuclear strategy was employed to overcome assignment ambiguities due to...
nmrlearner Journal club 0 08-22-2010 03:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:11 PM.


Map