BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 08:49 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Polarization of cinnamoyl-CoA substrates bound to enoyl-CoA hydratase: correlation of

Polarization of cinnamoyl-CoA substrates bound to enoyl-CoA hydratase: correlation of (13)C NMR with quantum mechanical calculations and calculation of electronic strain energy.

Related Articles Polarization of cinnamoyl-CoA substrates bound to enoyl-CoA hydratase: correlation of (13)C NMR with quantum mechanical calculations and calculation of electronic strain energy.

Biochemistry. 2002 Feb 26;41(8):2630-40

Authors: D'Ordine RL, Pawlak J, Bahnson BJ, Anderson VE

When alpha,beta-unsaturated substrates bind to the active site of enoyl-CoA hydratase, large spectral changes can be observed [D'Ordine, R. L., et al. (1994) Biochemistry 33, 12635-12643]. The differences in the isotropic magnetic shieldings of the free and active site-bound forms of the carbonyl, alpha-, and beta-carbons of the substrates, hexadienoyl-CoA, cinnamoyl-CoA, and (N,N-dimethyl-p-amino)cinnamoyl-CoA have been experimentally determined. The carbonyl and beta-carbons are all deshielded, while the alpha-carbons show increased shielding. These chemical shift perturbations are interpreted to suggest that the pi-electrons of the enoyl thiolester are polarized when bound at the active site. Using the crystal structure of (N,N-dimethyl-p-amino)cinnamoyl-CoA bound at the enzyme active site, the shielding tensors were calculated at three different levels of theory, up to a density functional theory model that included all of the contiguous active site residues. These calculations successfully reproduced the observed spectral changes and permitted the electronic polarization of the substrate to be quantified as an electron density difference map. The calculated electron density difference confirms the loss of electrons at the electrophilic beta-carbon and carbonyl carbon, while a slight increase in electron density at the alpha-carbon where proton donation occurs during the hydration reaction and a larger increase in electron density at the carbonyl oxygen are predicted. The energy required to polarize the electrons to the observed extent was calculated to be 3.2 kcal/mol. The force that provides the requisite energy for the polarization is the interaction of the electric field generated by the protein at the enzyme active site with the polarizable electrons of the substrate. Because the induced electronic polarization is along the predicted reaction pathway, the extent of substrate activation by the induced electronic strain is catalytically relevant.

PMID: 11851410 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Cross-polarization.png
http://upload.wikimedia.org/wikimedia/commons/thumb/c/cb/Cross-polarization.png/282px-Cross-polarization.png Uploaded by user "Charlesy" on Sat, 12 Nov 2011 03:38:00 UTC Added to category on Tue, 15 Nov 2011 01:37:58 UTC Original image: 335×357 pixel; 18.355 bytes. Licensing : CC-BY-SA,GFDL Cross-polarization.png More...
nmrlearner NMR pictures 0 11-15-2011 10:36 AM
Neurotoxin II Bound to Acetylcholine Receptors in Native Membranes Studied by Dynamic Nuclear Polarization NMR
Neurotoxin II Bound to Acetylcholine Receptors in Native Membranes Studied by Dynamic Nuclear Polarization NMR Arne H. Linden, Sascha Lange, W. Trent Franks, U?mit Akbey, Edgar Specker, Barth-Jan van Rossum and Hartmut Oschkinat http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja206999c/aop/images/medium/ja-2011-06999c_0003.gif Journal of the American Chemical Society DOI: 10.1021/ja206999c http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/4d1LYPHtCFw
nmrlearner Journal club 0 11-11-2011 08:26 AM
Dynamic Nuclear Polarization-Enhanced Solid-State NMR of a 13C-Labeled Signal Peptide Bound to Lipid-Reconstituted Sec Translocon
Dynamic Nuclear Polarization-Enhanced Solid-State NMR of a 13C-Labeled Signal Peptide Bound to Lipid-Reconstituted Sec Translocon Lenica Reggie, Jakob J. Lopez, Ian Collinson, Clemens Glaubitz and Mark Lorch http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja209378h/aop/images/medium/ja-2011-09378h_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja209378h http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/e6Ae3MMc0OU
nmrlearner Journal club 0 11-09-2011 06:44 AM
Ergodicity and efficiency of cross-polarization in NMR of static solids.
Ergodicity and efficiency of cross-polarization in NMR of static solids. Ergodicity and efficiency of cross-polarization in NMR of static solids. J Magn Reson. 2011 Apr;209(2):161-6 Authors: Nevzorov AA Cross-polarization transfer is employed in virtually every solid-state NMR experiment to enhance magnetization of low-gamma spins. Theory and experiment is used to assess the magnitude of the final quasistationary magnetization amplitude. The many-body density matrix equation is solved for relatively large (up to N=14) spin systems without the...
nmrlearner Journal club 0 07-23-2011 08:54 AM
Solution NMR of Polypeptides Hyperpolarized by Dynamic Nuclear Polarization.
Solution NMR of Polypeptides Hyperpolarized by Dynamic Nuclear Polarization. Solution NMR of Polypeptides Hyperpolarized by Dynamic Nuclear Polarization. Anal Chem. 2011 Jun 7; Authors: Ragavan M, Chen HY, Sekar G, Hilty C Hyperpolarization of nuclear spins through techniques such as Dynamic Nuclear Polarization (DNP) can greatly increase the signal to noise ratio in NMR measurements, thus eliminating the need for signal averaging. This enables the study of many dynamic processes which would otherwise not be amenable to study by NMR spectroscopy....
nmrlearner Journal club 0 06-10-2011 11:52 AM
Recovering lost magnetization: polarization enhancement in biomolecular NMR.
Recovering lost magnetization: polarization enhancement in biomolecular NMR. Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR. 2010 Dec 30; Authors: Favier A, Brutscher B Experimental sensitivity remains a major drawback for the application of NMR spectroscopy to fragile and low concentrated biomolecular samples. Here we describe an efficient polarization enhancement mechanism in longitudinal-relaxation enhanced fast-pulsing triple-resonance experiments. By recovering undetectable (1)H polarization...
nmrlearner Journal club 0 12-31-2010 07:03 PM
[NMR paper] NMR studies of [U-13C]cyclosporin A bound to cyclophilin: bound conformation and port
NMR studies of cyclosporin A bound to cyclophilin: bound conformation and portions of cyclosporin involved in binding. Related Articles NMR studies of cyclosporin A bound to cyclophilin: bound conformation and portions of cyclosporin involved in binding. Biochemistry. 1991 Jul 2;30(26):6574-83 Authors: Fesik SW, Gampe RT, Eaton HL, Gemmecker G, Olejniczak ET, Neri P, Holzman TF, Egan DA, Edalji R, Simmer R Cyclosporin A (CsA), a potent immunosuppressant, is known to bind with high specificity to cyclophilin (CyP), a 17.7 kDa protein with...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] NMR studies of [U-13C]cyclosporin A bound to cyclophilin: bound conformation and port
NMR studies of cyclosporin A bound to cyclophilin: bound conformation and portions of cyclosporin involved in binding. Related Articles NMR studies of cyclosporin A bound to cyclophilin: bound conformation and portions of cyclosporin involved in binding. Biochemistry. 1991 Jul 2;30(26):6574-83 Authors: Fesik SW, Gampe RT, Eaton HL, Gemmecker G, Olejniczak ET, Neri P, Holzman TF, Egan DA, Edalji R, Simmer R Cyclosporin A (CsA), a potent immunosuppressant, is known to bind with high specificity to cyclophilin (CyP), a 17.7 kDa protein with...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:10 PM.


Map