ZZ-exchange spectroscopy is widely used to study slow exchange processes in biomolecules, especially determination of exchange rates and assignment of minor peaks. However, if the exchange cross peaks overlap or the populations are skewed, kinetic analysis is hindered. In order to analyze slow exchange protein dynamics under such conditions, here we have developed a new method by combining ZZ-exchange and F1F2-selective NMR spectroscopy. We demonstrate the utility of this method by examining the monomerâ??dimer transition of the ubiquitin-associated domain of p62, successfully assigning the minor (monomeric) peaks and obtaining the exchange rates, which cannot be achieved by ZZ-exchange alone.
[NMR paper] NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A.*thaliana.
NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A.*thaliana.
Related Articles NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A.*thaliana.
Biophys J. 2017 May 23;112(10):2075-2088
Authors: Xu S, Ni S, Kennedy MA
Abstract
At2g44920 from Arabidopsis thaliana is a pentapeptide-repeat protein (PRP) composed of 25 repeats capped by*N- and C-terminal ?-helices. PRP structures are dominated by four-sided right-handed ?-helices typically consisting of mixtures of...
nmrlearner
Journal club
0
05-26-2017 08:36 PM
NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A.*thaliana
NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A.*thaliana
Publication date: 23 May 2017
Source:Biophysical Journal, Volume 112, Issue 10</br>
Author(s): Shenyuan Xu, Shuisong Ni, Michael A. Kennedy</br>
At2g44920 from Arabidopsis thaliana is a pentapeptide-repeat protein (PRP) composed of 25 repeats capped by*N- and C-terminal ?-helices. PRP structures are dominated by four-sided right-handed ?-helices typically consisting of mixtures of type II and type IV ?-turns. PRPs adopt repeated five-residue (Rfr) folds with an Rfr...
nmrlearner
Journal club
0
05-23-2017 04:45 PM
[NMR paper] Entire-Dataset Analysis of NMR Fast-Exchange Titration Spectra: A Mg(2+) Titration Analysis for HIV-1 Ribonuclease H Domain.
Entire-Dataset Analysis of NMR Fast-Exchange Titration Spectra: A Mg(2+) Titration Analysis for HIV-1 Ribonuclease H Domain.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Entire-Dataset Analysis of NMR Fast-Exchange Titration Spectra: A Mg(2+) Titration Analysis for HIV-1 Ribonuclease H Domain.
J Phys Chem B. 2016 Dec 15;120(49):12420-12431
Authors: Karki I, Christen MT, Spiriti J, Slack RL, Oda M, Kanaori K, Zuckerman DM, Ishima R
Abstract
This...
nmrlearner
Journal club
0
12-17-2016 07:18 AM
[NMR paper] Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Angew Chem Int Ed Engl. 2013 Feb 28;
Authors: Vallurupalli P, Kay LE
Abstract
Seeing the invisible: A 13 CO NMR chemical exchange saturation transfer (CEST) experiment for the study of "invisible" excited protein states with lifetimes on the order of 5-50 ms has been developed. The 13 CO chemical...
nmrlearner
Journal club
0
03-02-2013 11:45 AM
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy
Abstract It is shown that real-time 2D solid-state NMR can be used to obtain kinetic and structural information about the process of protein aggregation. In addition to the incorporation of kinetic information involving intermediate states, this approach can offer atom-specific resolution for all detectable species. The analysis was carried out using experimental data obtained during aggregation of the 10.4 kDa Crh protein, which has been shown to involve a partially unfolded intermediate...
nmrlearner
Journal club
0
01-27-2011 04:31 AM
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy.
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy.
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy.
J Biomol NMR. 2011 Jan 21;
Authors: Etzkorn M, Böckmann A, Baldus M
It is shown that real-time 2D solid-state NMR can be used to obtain kinetic and structural information about the process of protein aggregation. In addition to the incorporation of kinetic information involving intermediate states, this approach can offer atom-specific resolution for all...
nmrlearner
Journal club
0
01-22-2011 01:52 PM
TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins
TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins
Abstract A TROSY-selected ZZ-exchange experiment is described for measuring slow chemical exchange rates by monitoring the TROSY component of 15N longitudinal magnetization. Application of the proposed pulse sequence to the cadherin 8 N-terminal extracelluar domain demonstrates that enhanced sensitivity is obtained, compared to a previously described TROSY-detected ZZ-exchange sequence (Sahu et al. J Am Chem Soc 129: 13232â??13237, 2007), by preserving the TROSY effect during the mixing...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
[NMR paper] Observation of slow dynamic exchange processes in Ras protein crystals by 31P solid s
Observation of slow dynamic exchange processes in Ras protein crystals by 31P solid state NMR spectroscopy.
Related Articles Observation of slow dynamic exchange processes in Ras protein crystals by 31P solid state NMR spectroscopy.
J Mol Biol. 2002 Nov 8;323(5):899-907
Authors: Stumber M, Geyer M, Graf R, Kalbitzer HR, Scheffzek K, Haeberlen U
The folding, structure and biological function of many proteins are inherently dynamic properties of the protein molecule. Often, the respective molecular processes are preserved upon protein...