BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-11-2017, 05:12 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Phosphorylation of the regulatory domain of human tyrosine hydroxylase 1 monitored using non-uniformly sampled NMR.

Phosphorylation of the regulatory domain of human tyrosine hydroxylase 1 monitored using non-uniformly sampled NMR.

Related Articles Phosphorylation of the regulatory domain of human tyrosine hydroxylase 1 monitored using non-uniformly sampled NMR.

Biophys Chem. 2017 Jan 27;223:25-29

Authors: Louša P, Nedozrálová H, Župa E, Nová?ek J, Hritz J

Abstract
Human tyrosine hydroxylase 1 (hTH1) activity is regulated by phosphorylation of its regulatory domain (RD-hTH1) and by an interaction with the 14-3-3 protein. The RD-hTH1 is composed of a structured region (66-169) preceded by an intrinsically disordered protein region (IDP, hTH1_65) containing two phosphorylation sites (S19 and S40) which are highly relevant for its increase in activity. The NMR signals of the IDP region in the non-phosphorylated, singly phosphorylated (pS40) and doubly phosphorylated states (pS19_pS40) were assigned by non-uniformly sampled spectra with increased dimensionality (5D). The structural changes induced by phosphorylation were analyzed by means of secondary structure propensities. The phosphorylation kinetics of the S40 and S19 by kinases PKA and PRAK respectively were monitored by non-uniformly sampled time-resolved NMR spectroscopy followed by their quantitative analysis.


PMID: 28282625 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Accurate determination of rates from non-uniformly sampled relaxation data
Accurate determination of rates from non-uniformly sampled relaxation data Abstract The application of non-uniform sampling (NUS) to relaxation experiments traditionally used to characterize the fast internal motion of proteins is quantitatively examined. Experimentally acquired Poisson-gap sampled data reconstructed with iterative soft thresholding are compared to regular sequentially sampled (RSS) data. Using ubiquitin as a model system, it is shown that 25Â*% sampling is sufficient for the determination of quantitatively accurate relaxation...
nmrlearner Journal club 0 07-10-2016 10:50 AM
[NMR paper] Dissection of Binding between a Phosphorylated Tyrosine Hydroxylase Peptide and 14-3-3?: A Complex Story Elucidated by NMR.
Dissection of Binding between a Phosphorylated Tyrosine Hydroxylase Peptide and 14-3-3?: A Complex Story Elucidated by NMR. Dissection of Binding between a Phosphorylated Tyrosine Hydroxylase Peptide and 14-3-3?: A Complex Story Elucidated by NMR. Biophys J. 2014 Nov 4;107(9):2185-94 Authors: Hritz J, Byeon IJ, Krzysiak T, Martinez A, Sklenar V, Gronenborn AM Abstract Human tyrosine hydroxylase activity is regulated by phosphorylation of its N-terminus and by an interaction with the modulator 14-3-3 proteins. We investigated the...
nmrlearner Journal club 0 11-25-2014 09:40 PM
[NMR paper] Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA.
Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA. Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA. J Biomol NMR. 2013 Mar 2; Authors: Smet-Nocca C, Launay H, Wieruszeski JM, Lippens G, Landrieu I Abstract The Pin1 protein plays a critical role in the functional regulation of the hyperphosphorylated neuronal Tau protein in Alzheimer's disease and is by itself regulated by phosphorylation. We have...
nmrlearner Journal club 0 03-05-2013 03:25 PM
[NMR paper] A Genetically Encoded 19 F NMR Probe for Tyrosine Phosphorylation.
A Genetically Encoded 19 F NMR Probe for Tyrosine Phosphorylation. A Genetically Encoded 19 F NMR Probe for Tyrosine Phosphorylation. Angew Chem Int Ed Engl. 2013 Feb 28; Authors: Li F, Shi P, Li J, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W, Tian C, Wang J Abstract Simple and selective: Tyrosine phosphorylation is a pivotal post-translational modification which regulates the enzymatic activity, protein conformation, and protein-protein interactions. The highly efficient genetic incorporation of...
nmrlearner Journal club 0 03-02-2013 11:45 AM
[NMR paper] NMR backbone assignments of the tyrosine kinase domain of human fibroblast growth factor receptor 1.
NMR backbone assignments of the tyrosine kinase domain of human fibroblast growth factor receptor 1. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles NMR backbone assignments of the tyrosine kinase domain of human fibroblast growth factor receptor 1. Biomol NMR Assign. 2013 Jan 17; Authors: Vajpai N, Schott AK, Vogtherr M, Breeze AL Abstract Members of the fibroblast growth factor receptor tyrosine kinase family (FGFR1-4) play an important role in many...
nmrlearner Journal club 0 02-03-2013 10:19 AM
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition October 2011 Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 3</br> </br> </br> </br></br>
nmrlearner Journal club 0 12-15-2012 09:51 AM
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition October 2011 Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 3</br> </br> </br> </br></br>
nmrlearner Journal club 0 12-01-2012 06:10 PM
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 3</br> Vladislav Yu. Orekhov, Victor A. Jaravine</br> </br> </br></br>
nmrlearner Journal club 0 03-09-2012 09:16 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:54 AM.


Map