BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 02:27 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Phosphorylation-induced torsion-angle strain in the active center of HPr, detected by

Phosphorylation-induced torsion-angle strain in the active center of HPr, detected by NMR and restrained molecular dynamics refinement.

Related Articles Phosphorylation-induced torsion-angle strain in the active center of HPr, detected by NMR and restrained molecular dynamics refinement.

Protein Sci. 1996 Mar;5(3):442-6

Authors: Van Nuland NA, Wiersma JA, Van Der Spoel D, De Groot BL, Scheek RM, Robillard GT

The structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli has been solved by NMR and compared with that of unphosphorylated HPr. The structural changes that occur upon phosphorylation of His 15, monitored by changes in NOE patterns, 3JNHH alpha-coupling constants, and chemical shifts, are limited to the region around the phosphorylation site. The His15 backbone torsion angles become strained upon phosphorylation. The release of this strain during the phosphoryl-transfer to Enzyme II facilitates the transport of carbohydrates across the membrane. From an X-ray study of Streptococcus faecalis HPr (Jia Z, Vandonselaar M, Quail JW, Delbaere LTJ, 1993, Nature 361:94-97), it was proposed that the observed torsion-angle strain at residue 16 in unphosphorylated S. faecalis HPr has a role to play in the protein's phosphocarrier function. The model predicts that this strain is released upon phosphorylation. Our observations on E. coli HPr in solution, which shows strain only after phosphorylation, and the fact that all other HPrs studied thus far in their unphosphorylated forms show no strain either, led us to investigate the possibility that the crystal environment causes the strain in S. faecalis HPr. A 1-ns molecular dynamics simulation of S. faecalis HPr, under conditions that mimic the crystal environment, confirms the observations from the X-ray study, including the torsion-angle strain at residue 16. The strain disappeared, however, when S. faecalis HPr was simulated in a water environment, resulting in an active site configuration virtually the same as that observed in all other unphosphorylated HPrs. This indicates that the torsion-angle strain at Ala 16 in S. faecalis HPr is a result of crystal contacts or conditions and does not play a role in the phosphorylation-dephosphorylation cycle.

PMID: 8868480 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Simultaneous single-structure and bundle representation of protein NMR structures in torsion angle space
Simultaneous single-structure and bundle representation of protein NMR structures in torsion angle space Abstract A method is introduced to represent an ensemble of conformers of a protein by a single structure in torsion angle space that lies closest to the averaged Cartesian coordinates while maintaining perfect covalent geometry and on average equal steric quality and an equally good fit to the experimental (e.g. NMR) data as the individual conformers of the ensemble. The single representative â??regmean structureâ?? is obtained by simulated annealing in torsion angle space with the...
nmrlearner Journal club 0 02-25-2012 12:16 AM
Site-Specific ?- and ?-Torsion Angle Determination in a Uniformly/Extensively 13C- and 15N-Labeled Peptide
Site-Specific ?- and ?-Torsion Angle Determination in a Uniformly/Extensively 13C- and 15N-Labeled Peptide Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 17 August 2011</br> Sungsool, Wi , Justin, Spano</br> A solid-state rotational-echo double resonance (REDOR) NMR method was introduced to identify the ?- and ?-torsion angle from a 1H–15N or 1H–13C? spin system of alanine-like residues in a selectively, uniformly, or extensively 15N-/13C-labeled peptide. When a C?(i) or a 15N peak is site-specifically obtainable in the...
nmrlearner Journal club 0 08-18-2011 03:52 AM
[NMR paper] Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasm
Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. Related Articles Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J Mol Biol. 2001 Mar 30;307(3):871-84 Authors: Ramelot TA, Nicholson LK The cytoplasmic tail of the amyloid precursor protein (APPc) interacts with several cellular factors implicated in intracellular signaling or proteolytic production of amyloid beta peptide found in senile plaques of Alzheimer's disease...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Ligand-induced strain in hydrogen bonds of the c-Src SH3 domain detected by NMR.
Ligand-induced strain in hydrogen bonds of the c-Src SH3 domain detected by NMR. Related Articles Ligand-induced strain in hydrogen bonds of the c-Src SH3 domain detected by NMR. J Mol Biol. 2000 Dec 8;304(4):497-505 Authors: Cordier F, Wang C, Grzesiek S, Nicholson LK Changes in the molecular conformation of proteins can result from a variety of perturbations, and can play crucial roles in the regulation of biological activity. A new solution NMR method has been applied to monitor ligand-induced changes in hydrogen bond geometry in the...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Torsion angle dynamics for NMR structure calculation with the new program DYANA.
Torsion angle dynamics for NMR structure calculation with the new program DYANA. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283-98 Authors: Güntert P, Mumenthaler C, Wüthrich K The new program DYANA (DYnamics Algorithm for Nmr Applications) for efficient calculation of three-dimensional protein and nucleic acid structures from distance constraints and...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculatio
Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J Magn Reson. 1997 Jan;124(1):154-64 Authors: Stein EG, Rice LM, Brünger AT Molecular dynamics in torsion-angle space was applied to nuclear magnetic resonance structure calculation using nuclear Overhauser effect-derived distances and...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculatio
Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J Magn Reson. 1997 Jan;124(1):154-64 Authors: Stein EG, Rice LM, Brünger AT Molecular dynamics in torsion-angle space was applied to nuclear magnetic resonance structure calculation using nuclear Overhauser effect-derived distances and...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] Effect of phosphorylation on hydrogen-bonding interactions of the active site histidi
Effect of phosphorylation on hydrogen-bonding interactions of the active site histidine of the phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system determined by 15N NMR spectroscopy. Related Articles Effect of phosphorylation on hydrogen-bonding interactions of the active site histidine of the phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system determined by 15N NMR spectroscopy. Biochemistry. 1990 Sep 4;29(35):8164-71 Authors: van Dijk AA, de Lange LC, Bachovchin WW, Robillard GT...
nmrlearner Journal club 0 08-21-2010 11:04 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:10 AM.


Map