Related ArticlesPhosphorylation-induced torsion-angle strain in the active center of HPr, detected by NMR and restrained molecular dynamics refinement.
Protein Sci. 1996 Mar;5(3):442-6
Authors: Van Nuland NA, Wiersma JA, Van Der Spoel D, De Groot BL, Scheek RM, Robillard GT
The structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli has been solved by NMR and compared with that of unphosphorylated HPr. The structural changes that occur upon phosphorylation of His 15, monitored by changes in NOE patterns, 3JNHH alpha-coupling constants, and chemical shifts, are limited to the region around the phosphorylation site. The His15 backbone torsion angles become strained upon phosphorylation. The release of this strain during the phosphoryl-transfer to Enzyme II facilitates the transport of carbohydrates across the membrane. From an X-ray study of Streptococcus faecalis HPr (Jia Z, Vandonselaar M, Quail JW, Delbaere LTJ, 1993, Nature 361:94-97), it was proposed that the observed torsion-angle strain at residue 16 in unphosphorylated S. faecalis HPr has a role to play in the protein's phosphocarrier function. The model predicts that this strain is released upon phosphorylation. Our observations on E. coli HPr in solution, which shows strain only after phosphorylation, and the fact that all other HPrs studied thus far in their unphosphorylated forms show no strain either, led us to investigate the possibility that the crystal environment causes the strain in S. faecalis HPr. A 1-ns molecular dynamics simulation of S. faecalis HPr, under conditions that mimic the crystal environment, confirms the observations from the X-ray study, including the torsion-angle strain at residue 16. The strain disappeared, however, when S. faecalis HPr was simulated in a water environment, resulting in an active site configuration virtually the same as that observed in all other unphosphorylated HPrs. This indicates that the torsion-angle strain at Ala 16 in S. faecalis HPr is a result of crystal contacts or conditions and does not play a role in the phosphorylation-dephosphorylation cycle.
Simultaneous single-structure and bundle representation of protein NMR structures in torsion angle space
Simultaneous single-structure and bundle representation of protein NMR structures in torsion angle space
Abstract A method is introduced to represent an ensemble of conformers of a protein by a single structure in torsion angle space that lies closest to the averaged Cartesian coordinates while maintaining perfect covalent geometry and on average equal steric quality and an equally good fit to the experimental (e.g. NMR) data as the individual conformers of the ensemble. The single representative â??regmean structureâ?? is obtained by simulated annealing in torsion angle space with the...
nmrlearner
Journal club
0
02-25-2012 12:16 AM
Site-Specific ?- and ?-Torsion Angle Determination in a Uniformly/Extensively 13C- and 15N-Labeled Peptide
Site-Specific ?- and ?-Torsion Angle Determination in a Uniformly/Extensively 13C- and 15N-Labeled Peptide
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 17 August 2011</br>
Sungsool, Wi , Justin, Spano</br>
A solid-state rotational-echo double resonance (REDOR) NMR method was introduced to identify the ?- and ?-torsion angle from a 1H–15N or 1H–13C? spin system of alanine-like residues in a selectively, uniformly, or extensively 15N-/13C-labeled peptide. When a C?(i) or a 15N peak is site-specifically obtainable in the...
nmrlearner
Journal club
0
08-18-2011 03:52 AM
[NMR paper] Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasm
Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR.
Related Articles Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR.
J Mol Biol. 2001 Mar 30;307(3):871-84
Authors: Ramelot TA, Nicholson LK
The cytoplasmic tail of the amyloid precursor protein (APPc) interacts with several cellular factors implicated in intracellular signaling or proteolytic production of amyloid beta peptide found in senile plaques of Alzheimer's disease...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
[NMR paper] Ligand-induced strain in hydrogen bonds of the c-Src SH3 domain detected by NMR.
Ligand-induced strain in hydrogen bonds of the c-Src SH3 domain detected by NMR.
Related Articles Ligand-induced strain in hydrogen bonds of the c-Src SH3 domain detected by NMR.
J Mol Biol. 2000 Dec 8;304(4):497-505
Authors: Cordier F, Wang C, Grzesiek S, Nicholson LK
Changes in the molecular conformation of proteins can result from a variety of perturbations, and can play crucial roles in the regulation of biological activity. A new solution NMR method has been applied to monitor ligand-induced changes in hydrogen bond geometry in the...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] Torsion angle dynamics for NMR structure calculation with the new program DYANA.
Torsion angle dynamics for NMR structure calculation with the new program DYANA.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Torsion angle dynamics for NMR structure calculation with the new program DYANA.
J Mol Biol. 1997 Oct 17;273(1):283-98
Authors: Güntert P, Mumenthaler C, Wüthrich K
The new program DYANA (DYnamics Algorithm for Nmr Applications) for efficient calculation of three-dimensional protein and nucleic acid structures from distance constraints and...
nmrlearner
Journal club
0
08-22-2010 05:08 PM
[NMR paper] Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculatio
Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation.
J Magn Reson. 1997 Jan;124(1):154-64
Authors: Stein EG, Rice LM, Brünger AT
Molecular dynamics in torsion-angle space was applied to nuclear magnetic resonance structure calculation using nuclear Overhauser effect-derived distances and...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculatio
Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation.
J Magn Reson. 1997 Jan;124(1):154-64
Authors: Stein EG, Rice LM, Brünger AT
Molecular dynamics in torsion-angle space was applied to nuclear magnetic resonance structure calculation using nuclear Overhauser effect-derived distances and...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
[NMR paper] Effect of phosphorylation on hydrogen-bonding interactions of the active site histidi
Effect of phosphorylation on hydrogen-bonding interactions of the active site histidine of the phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system determined by 15N NMR spectroscopy.
Related Articles Effect of phosphorylation on hydrogen-bonding interactions of the active site histidine of the phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system determined by 15N NMR spectroscopy.
Biochemistry. 1990 Sep 4;29(35):8164-71
Authors: van Dijk AA, de Lange LC, Bachovchin WW, Robillard GT...