BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-07-2013, 10:31 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default pH-triggered, activated-state conformations of the influenza hemagglutinin fusion peptide revealed by NMR.

pH-triggered, activated-state conformations of the influenza hemagglutinin fusion peptide revealed by NMR.

Related Articles pH-triggered, activated-state conformations of the influenza hemagglutinin fusion peptide revealed by NMR.

Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):19994-9

Authors: Lorieau JL, Louis JM, Schwieters CD, Bax A

Abstract
The highly conserved first 23 residues of the influenza hemagglutinin HA2 subunit constitute the fusion domain, which plays a pivotal role in fusing viral and host-cell membranes. At neutral pH, this peptide adopts a tight helical hairpin wedge structure, stabilized by aliphatic hydrogen bonding and charge-dipole interactions. We demonstrate that at low pH, where the fusion process is triggered, the native peptide transiently visits activated states that are very similar to those sampled by a G8A mutant. This mutant retains a small fraction of helical hairpin conformation, in rapid equilibrium with at least two open structures. The exchange rate between the closed and open conformations of the wild-type fusion peptide is ~40 kHz, with a total open-state population of ~20%. Transitions to these activated states are likely to play a crucial role in formation of the fusion pore, an essential structure required in the final stage of membrane fusion.


PMID: 23169643 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone (13)CO- (15)N rotational-echo double-resonance solid-state NMR.
Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone (13)CO- (15)N rotational-echo double-resonance solid-state NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone (13)CO- (15)N rotational-echo double-resonance solid-state NMR. J Biomol NMR. 2013 Jan 18; Authors: Ghosh U, Xie L, Weliky DP Abstract...
nmrlearner Journal club 0 02-03-2013 10:19 AM
NMR Determination of Protein Partitioning into Membrane Domains with Different Curvatures and Application to the Influenza M2 Peptide
NMR Determination of Protein Partitioning into Membrane Domains with Different Curvatures and Application to the Influenza M2 Peptide 22 February 2012 Publication year: 2012 Source:Biophysical Journal, Volume 102, Issue 4</br> </br> The M2 protein of the influenza A virus acts both as a drug-sensitive proton channel and mediates virus budding through membrane scission. The segment responsible for causing membrane curvature is an amphipathic helix in the cytoplasmic domain of the protein. Here, we use 31P and 13C solid-state NMR to examine M2-induced membrane curvature....
nmrlearner Journal club 0 02-03-2013 10:13 AM
NMR Structure, Localization,and Vesicle Fusion of Chikungunya Virus Fusion Peptide
NMR Structure, Localization,and Vesicle Fusion of Chikungunya Virus Fusion Peptide http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi300901f/aop/images/medium/bi-2012-00901f_0009.gif Biochemistry DOI: 10.1021/bi300901f http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/CLSzgXkx2u4 More...
nmrlearner Journal club 0 09-27-2012 03:39 AM
Whole-Body Rocking Motion of a Fusion Peptide in Lipid Bilayers from Size-Dispersed 15N NMR Relaxation
Whole-Body Rocking Motion of a Fusion Peptide in Lipid Bilayers from Size-Dispersed 15N NMR Relaxation Justin L. Lorieau, John M. Louis and Ad Bax http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2045309/aop/images/medium/ja-2011-045309_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja2045309 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/2aIqfWmdIn4
nmrlearner Journal club 0 08-23-2011 05:30 AM
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations.
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations. Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations. Eur Biophys J. 2011 Jan 28; Authors: Grasnick D, Sternberg U, Strandberg E, Wadhwani P, Ulrich AS To better understand peptide-induced membrane fusion at a molecular level, we set out to determine the structure of the fusogenic peptide FP23 from the HIV-1 protein gp41 when bound to a lipid bilayer. An established solid-state...
nmrlearner Journal club 0 01-29-2011 12:35 PM
[NMR paper] An efficient fusion expression system for protein and peptide overexpression in Esche
An efficient fusion expression system for protein and peptide overexpression in Escherichia coli and NMR sample preparation. Related Articles An efficient fusion expression system for protein and peptide overexpression in Escherichia coli and NMR sample preparation. Protein Pept Lett. 2003 Apr;10(2):175-81 Authors: Cheng Y, Liu D, Feng Y, Jing G An efficient fusion expression system with a small fusion partner, His6-tagged N-terminal fragment of staphylococcal nuclease R, has been constructed and tested with two genes. The results show that...
nmrlearner Journal club 0 11-24-2010 09:01 PM
Production of recombinant isotopically labelled peptide by fusion to an insoluble par
Production of recombinant isotopically labelled peptide by fusion to an insoluble partner protein: generation of integrin ?v?6 binding peptides for NMR. Related Articles Production of recombinant isotopically labelled peptide by fusion to an insoluble partner protein: generation of integrin ?v?6 binding peptides for NMR. Mol Biosyst. 2010 Oct 18; Authors: Wagstaff JL, Howard MJ, Williamson RA The integrin ?v?6 is up-regulated in several cancers and has clinical potential for both tumour imaging and therapy. Peptide ligands have been developed...
nmrlearner Journal club 0 10-19-2010 04:51 PM
[NMR paper] Analysis of a peptide inhibitor of paramyxovirus (NDV) fusion using biological assays
Analysis of a peptide inhibitor of paramyxovirus (NDV) fusion using biological assays, NMR, and molecular modeling. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Analysis of a peptide inhibitor of paramyxovirus (NDV) fusion using biological assays, NMR, and molecular modeling. Virology. 1997 Nov 24;238(2):291-304 Authors: Young JK, Hicks RP, Wright GE, Morrison TG To investigate the molecular mechanisms involved in paramyxovirus-induced cell fusion, the function and...
nmrlearner Journal club 0 08-22-2010 05:08 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:33 PM.


Map