[NMR paper] pH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study.
Related ArticlespH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study.
Abstract
Several lines of evidence now well establish that unfolded peptides in general, and alanine in specific, have an intrinsic preference for the polyproline II (pPII) conformation. Investigation of local order in the unfolded state is, however, complicated by experimental limitations and the inherent dynamics of the system, which has in some cases yielded inconsistent results from different types of experiments. One method of studying these systems is the use of short model peptides, and specifically short alanine peptides, known for predominantly sampling pPII structure in aqueous solution. Recently, He et al. ( J. Am. Chem. Soc. 2012 , 134 , 1571 - 1576 ) proposed that unblocked tripeptides may not be suitable models for studying conformational propensities in unfolded peptides due to the presence of end effect, that is, electrostatic interactions between investigated amino acid residues and terminal charges. To determine whether changing the protonation states of the N- and C-termini influence the conformational manifold of the central amino acid residue in tripeptides, we have examined the pH-dependence of unblocked trialanine and the conformational preferences of alanine in the alanine dipeptide. To this end, we measured and globally analyzed amide I' band profiles and NMR J-coupling constants. We described conformational distributions as the superposition of two-dimensional Gaussian distributions assignable to specific subspaces of the Ramachandran plot. Results show that the conformational ensemble of trialanine as a whole, and the pPII content (?pPII = 0.84) in particular, remains practically unaffected by changing the protonation state. We found that compared to trialanine, the alanine dipeptide has slightly lower pPII content (?pPII = 0.74) and an ensemble more reminiscent of the unblocked Gly-Ala-Gly model peptide. In addition, a two-state thermodynamic analysis of the conformational sensitive ??(T) and (3)J(H(N)H(?))(T) data obtained from electronic circular dichroism and H NMR spectra indicate that the free energy landscape of trialanine is similar in all protonation states. MD simulations for the investigated peptides corroborate this notion and show further that the hydration shell around unblocked trialanine is unaffected by the protonation/deprotonation of the C-terminal group. In contrast, the alanine dipeptide shows a reduced water density around the central residue as well as a less ordered hydration shell, which decreases the pPII propensity and reduces the lifetime of sampled conformations.
[NMR paper] Effects of cholesterol on membrane molecular dynamics studied by fast field cycling NMR relaxometry.
Effects of cholesterol on membrane molecular dynamics studied by fast field cycling NMR relaxometry.
Related Articles Effects of cholesterol on membrane molecular dynamics studied by fast field cycling NMR relaxometry.
Phys Chem Chem Phys. 2013 Aug 22;
Authors: Hsieh CJ, Chen YW, Hwang DW
Abstract
Biological membranes are complex structures composed of various lipids and proteins. Different membrane compositions affect viscoelastic and hydrodynamic properties of membranes, which are critical to their functions. Lipid bilayer vesicles...
nmrlearner
Journal club
0
08-24-2013 04:53 PM
[NMR paper] Direct Evidence for Hydrogen Bonding Between Hydroxyl Groups in Glycans: A Combined NMR and Molecular Dynamics Study.
Direct Evidence for Hydrogen Bonding Between Hydroxyl Groups in Glycans: A Combined NMR and Molecular Dynamics Study.
Related Articles Direct Evidence for Hydrogen Bonding Between Hydroxyl Groups in Glycans: A Combined NMR and Molecular Dynamics Study.
J Phys Chem B. 2013 Mar 26;
Authors: Battistel MD, Pendrill R, Widmalm G, Freedberg DI
Abstract
With this report we introduce the abundant hydroxyl groups of glycans as NMR handles and structural probes that expand the repertoire of tools for structure-function studies on glycans in...
nmrlearner
Journal club
0
03-28-2013 04:03 PM
[NMR paper] T1BT* structural study of an anti-plasmodial peptide through NMR and molecular dynamics.
T1BT* structural study of an anti-plasmodial peptide through NMR and molecular dynamics.
Related Articles T1BT* structural study of an anti-plasmodial peptide through NMR and molecular dynamics.
Malar J. 2013 Mar 18;12(1):104
Authors: Topchiy E, Armstrong GS, Boswell KI, Buchner GS, Kubelka J, Lehmann TE
Abstract
BACKGROUND: T1BT* is a peptide construct containing the T1 and B epitopes located in the 5' minor repeat and the 3' major repeat of the central repeat region of the Plasmodium falciparum circumsporozoite protein (CSP),...
Deuterium Magic Angle Spinning NMR Used to Study the Dynamics of Peptides Adsorbed onto Polystyrene and Functionalized Polystyrene Surfaces.
Deuterium Magic Angle Spinning NMR Used to Study the Dynamics of Peptides Adsorbed onto Polystyrene and Functionalized Polystyrene Surfaces.
Deuterium Magic Angle Spinning NMR Used to Study the Dynamics of Peptides Adsorbed onto Polystyrene and Functionalized Polystyrene Surfaces.
J Phys Chem B. 2011 Jun 8;
Authors: Breen NF, Li K, Olsen GL, Drobny GP
LK?14 is a 14 amino acid peptide which displays a periodic alternation of leucine and lysine amino acids. This "hydrophobic periodicity" has been found to result in an ?-helical secondary structure...
nmrlearner
Journal club
0
06-10-2011 11:52 AM
Methanol Strengthens Hydrogen Bonds and Weakens Hydrophobic Interactions in Proteins - A Combined Molecular Dynamics and NMR study.
Methanol Strengthens Hydrogen Bonds and Weakens Hydrophobic Interactions in Proteins - A Combined Molecular Dynamics and NMR study.
Methanol Strengthens Hydrogen Bonds and Weakens Hydrophobic Interactions in Proteins - A Combined Molecular Dynamics and NMR study.
J Phys Chem B. 2011 May 2;
Authors: Hwang S, Shao Q, Williams H, Hilty C, Gao YQ
A combined simulation and experimental study was performed to investigate how methanol affects the structure of a model peptide BBA5. BBA5 forms a stable ?-hairpin-?-helix structure in aqueous solutions....
nmrlearner
Journal club
0
05-04-2011 04:14 PM
The effects of anticalcification treatments and hydration on the molecular dynamics of bovine pericardium collagen as revealed by 13C solid-state NMR.
The effects of anticalcification treatments and hydration on the molecular dynamics of bovine pericardium collagen as revealed by 13C solid-state NMR.
The effects of anticalcification treatments and hydration on the molecular dynamics of bovine pericardium collagen as revealed by 13C solid-state NMR.
Magn Reson Chem. 2010 Sep;48(9):704-11
Authors: deAzevedo ER, Ayrosa AM, Faria GC, Cervantes HJ, Huster D, Bonagamba TJ, Pitombo RN, Rabbani SR
This article describes a solid-state NMR (SSNMR) investigation of the influence of hydration and chemical...
nmrlearner
Journal club
0
01-21-2011 12:00 PM
[NMR paper] 13C NMR study of the effects of mutation on the tryptophan dynamics in chymotrypsin i
13C NMR study of the effects of mutation on the tryptophan dynamics in chymotrypsin inhibitor 2: correlations with structure and stability.
Related Articles 13C NMR study of the effects of mutation on the tryptophan dynamics in chymotrypsin inhibitor 2: correlations with structure and stability.
Biochemistry. 1993 Jan 19;32(2):657-62
Authors: Matthews SJ, Jandu SK, Leatherbarrow RJ
Recombinant chymotrypsin inhibitor 2 (CI-2) and the three mutants Ile39-->Val, Ile39-->Leu, and Arg67-->Ala were successfully enriched with tryptophan at position...