BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-20-2014, 05:45 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default pH-dependent random coil 1H, 13C, and 15N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements

pH-dependent random coil 1H, 13C, and 15N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements

Abstract

The pK a values and charge states of ionizable residues in polypeptides and proteins are frequently determined via NMR-monitored pH titrations. To aid the interpretation of the resulting titration data, we have measured the pH-dependent chemical shifts of nearly all the 1H, 13C, and 15N nuclei in the seven common ionizable amino acids (XÂ*=Â*Asp, Glu, His, Cys, Tyr, Lys, and Arg) within the context of a blocked tripeptide, acetyl-Gly-X-Gly-amide. Alanine amide and N-acetyl alanine were used as models of the N- and C-termini, respectively. Together, this study provides an essentially complete set of pH-dependent intra-residue and nearest-neighbor reference chemical shifts to help guide protein pK a measurements. These data should also facilitate pH-dependent corrections in algorithms used to predict the chemical shifts of random coil polypeptides. In parallel, deuterium isotope shifts for the side chain 15N nuclei of His, Lys, and Arg in their positively-charged and neutral states were also measured. Along with previously published results for Asp, Glu, Cys, and Tyr, these deuterium isotope shifts can provide complementary experimental evidence for defining the ionization states of protein residues.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
RCI - Random Coil Index for predicting protein flexibility from chemical shifts
RCI website RCI method predicts protein flexibility by calculating the Random Coil Index from backbone chemical shifts and predicting values of model-free order parameters as well as per-residue RMSF of NMR and MD ensembles from the Random Coil Index. The key advantages of this protocol over existing methods of studying protein flexibility are (i) it does not require prior knowledge of a protein's tertiary structure, (ii) it is not sensitive to the protein's overall tumbling and (iii) it does not require additional NMR measurements beyond the standard experiments for backbone...
markber NMR software 0 02-02-2012 11:36 PM
Uncovering symmetry-breaking vector and reliability order for assigning secondary structures of proteins from atomic NMR chemical shifts in amino acids
Uncovering symmetry-breaking vector and reliability order for assigning secondary structures of proteins from atomic NMR chemical shifts in amino acids Abstract Unravelling the complex correlation between chemical shifts of 13 C α, 13 C β, 13 C�, 1 H α, 15 N, 1 H N atoms in amino acids of proteins from NMR experiment and local structural environments of amino acids facilitates the assignment of secondary structures of proteins. This is an important impetus for both determining the three-dimensional structure and understanding the biological function of proteins. The previous...
nmrlearner Journal club 0 11-14-2011 08:45 AM
Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution
Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution Abstract Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues. The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each...
nmrlearner Journal club 0 06-06-2011 12:53 AM
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH Abstract Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical shifts and sequence correction factors determined for a GGXGG peptide series following the approach of Schwarzinger et al. (J Am Chem Soc 123(13):2970â??2978, 2001). The chemical shifts are...
nmrlearner Journal club 0 01-17-2011 02:40 AM
[NMR paper] Proline-directed random-coil chemical shift values as a tool for the NMR assignment o
Proline-directed random-coil chemical shift values as a tool for the NMR assignment of the tau phosphorylation sites. Related Articles Proline-directed random-coil chemical shift values as a tool for the NMR assignment of the tau phosphorylation sites. Chembiochem. 2004 Jan 3;5(1):73-8 Authors: Lippens G, Wieruszeski JM, Leroy A, Smet C, Sillen A, Buée L, Landrieu I NMR spectroscopy of the full-length neuronal Tau protein has proved to be difficult due to the length of the protein and the unfavorable amino acid composition. We show that the...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Sequence-dependent correction of random coil NMR chemical shifts.
Sequence-dependent correction of random coil NMR chemical shifts. Related Articles Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc. 2001 Apr 4;123(13):2970-8 Authors: Schwarzinger S, Kroon GJ, Foss TR, Chung J, Wright PE, Dyson HJ Random coil chemical shifts are commonly used to detect secondary structure elements in proteins in chemical shift index calculations. While this technique is very reliable for folded proteins, application to unfolded proteins reveals significant deviations from measured random coil...
nmrlearner Journal club 0 11-19-2010 08:32 PM
Application of the random coil index to studying protein flexibility
Application of the random coil index to studying protein flexibility Mark V. Berjanskii and David S. Wishart Journal of Biomolecular NMR; 2008; 40(1); pp 31-48 Abstract: Protein flexibility lies at the heart of many protein–ligand binding events and enzymatic activities. However, the experimental measurement of protein motions is often difficult, tedious and error-prone. As a result, there is a considerable interest in developing simpler and faster ways of quantifying protein flexibility. Recently, we described a method, called Random Coil Index (RCI), which appears to be able to...
matthias Journal club 0 08-14-2008 01:03 AM
Chemical shift prediction in random coil peptides
Please check this program and let me know if it does work for your random coil peptides. http://bloch.anu.edu.au/cgi-bin/shiftpred/shiftpred.cgi Thank you, Bogdan Bancia bbancia@yahoo.com
bbancia NMR software 2 04-13-2007 03:54 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:57 PM.


Map