Related ArticlespH-Dependent Conformation, Dynamics, and Aromatic Interaction of*the*Gating Tryptophan Residue of the Influenza M2 Proton Channel from*Solid-State NMR.
Biophys J. 2013 Apr 16;104(8):1698-708
Authors: Williams JK, Zhang Y, Schmidt-Rohr K, Hong M
Abstract
The M2 protein of the influenza virus conducts protons into the virion under external acidic pH. The proton selectivity of the tetrameric channel is controlled by a single histidine (His(37)), whereas channel gating is accomplished by a single tryptophan (Trp(41)) in the transmembrane domain of the protein. Aromatic interaction between these two functional residues has been previously observed in Raman spectra, but atomic-resolution evidence for this interaction remains scarce. Here we use high-resolution solid-state NMR spectroscopy to determine the side-chain conformation and dynamics of Trp(41) in the M2 transmembrane peptide by measuring the Trp chemical shifts, His(37)-Trp(41) distances, and indole dynamics at high and low pH. The interatomic distances constrain the Trp41 side-chain conformation to trans for ?1 and 120-135° for ?2. This t90 rotamer points the N?1-C?2-C?2 side of the indole toward the aqueous pore. The precise ?1 and ?2 angles differ by ~20° between high and low pH. These differences, together with the known changes in the helix tilt angle between high and low pH, push the imidazole and indole rings closer together at low pH. Moreover, the measured order parameters indicate that the indole rings undergo simultaneous ?1 and ?2 torsional fluctuations at acidic pH, but only restricted ?1 fluctuations at high pH. As a result, the Trp(41) side chain periodically experiences strong cation-? interactions with His(37) at low pH as the indole sweeps through its trajectory, whereas at high pH the indole ring is further away from the imidazole. These results provide the structural basis for understanding how the His(37)-water proton exchange rate measured by NMR is reduced to the small proton flux measured in biochemical experiments. The indole dynamics, together with the known motion of the imidazolium, indicate that this compact ion channel uses economical side-chain dynamics to regulate proton conduction and gating.
NMR Detection of pH-Dependent Histidine–Water Proton Exchange Reveals the Conduction Mechanism of a Transmembrane Proton Channel
NMR Detection of pH-Dependent Histidine–Water Proton Exchange Reveals the Conduction Mechanism of a Transmembrane Proton Channel
Fanghao Hu, Klaus Schmidt-Rohr and Mei Hong
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2081185/aop/images/medium/ja-2011-081185_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/ja2081185
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/C3pPoB5_PR8
nmrlearner
Journal club
0
10-22-2011 10:16 AM
Alternative SAIL-Trp for robust aromatic signal assignment and determination of the Ï?2 conformation by intra-residue NOEs
Alternative SAIL-Trp for robust aromatic signal assignment and determination of the Ï?2 conformation by intra-residue NOEs
Abstract Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing -proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using...
nmrlearner
Journal club
0
09-27-2011 07:04 AM
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Bioorg Med Chem. 2011 Aug 27;
Authors: Masuda Y, Fukuchi M, Yatagawa T, Tada M, Takeda K, Irie K, Akagi KI, Monobe Y, Imazawa T, Takegoshi K
Abstract
Aggregation of 42-residue amyloid ?-protein (A?42) plays a pivotal role in the etiology of Alzheimer's disease (AD). Curcumin, the yellow pigment in the rhizome of turmeric, attracts...
nmrlearner
Journal club
0
09-20-2011 03:10 PM
Interaction Tensors and Local Dynamics in Common Structural Motifs of Nitrogen: A Solid-State 14N NMR and DFT Study
Interaction Tensors and Local Dynamics in Common Structural Motifs of Nitrogen: A Solid-State 14N NMR and DFT Study
Luke A. O’Dell, Robert W. Schurko, Kristopher J. Harris, Jochen Autschbach and Christopher I. Ratcliffe
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja108181y/aop/images/medium/ja-2010-08181y_0020.gif
Journal of the American Chemical Society
DOI: 10.1021/ja108181y
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/RPRAYPgAJxo
nmrlearner
Journal club
0
12-24-2010 03:08 AM
[NMR paper] Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel
Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers.
Related Articles Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers.
Protein Sci. 1998 Feb;7(2):342-8
Authors: Kim Y, Valentine K, Opella SJ, Schendel SL, Cramer WA
The colicin E1 channel polypeptide was shown to be organized anisotropically in membranes by solid-state NMR analysis of samples of uniformly 15N-labeled protein in oriented planar phospholipid bilayers. The 190...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
Mechanisms of proton conduction and gating in influenza m2 proton channels from solid
Mechanisms of proton conduction and gating in influenza m2 proton channels from solid-state NMR.
Related Articles Mechanisms of proton conduction and gating in influenza m2 proton channels from solid-state NMR.
Science. 2010 Oct 22;330(6003):505-8
Authors: Hu F, Luo W, Hong M
The M2 protein of influenza viruses forms an acid-activated tetrameric proton channel. We used solid-state nuclear magnetic resonance spectroscopy to determine the structure and functional dynamics of the pH-sensing and proton-selective histidine-37 in M2 bound to a...
nmrlearner
Journal club
0
10-23-2010 05:48 PM
Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel.
Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel.
Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel.
Biochem Biophys Res Commun. 2010 Sep 9;
Authors: Pielak RM, Chou JJ
The M2 protein of influenza A virus forms a proton-selective channel that is required for viral replication; it is also the target of the anti-influenza drugs, amantadine and rimantadine. Widespread drug-resistant mutants, however, has greatly compromised the effectiveness of these drugs. Here, we report the...
nmrlearner
Journal club
0
09-14-2010 02:03 PM
[NMR paper] Solid-state NMR evidence for an antibody-dependent conformation of the V3 loop of HIV
Solid-state NMR evidence for an antibody-dependent conformation of the V3 loop of HIV-1 gp120.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.nature.com-images-lo_nsb.gif Related Articles Solid-state NMR evidence for an antibody-dependent conformation of the V3 loop of HIV-1 gp120.
Nat Struct Biol. 1999 Feb;6(2):141-5
Authors: Weliky DP, Bennett AE, Zvi A, Anglister J, Steinbach PJ, Tycko R
Solid-state NMR measurements have been carried out on frozen solutions of the complex of a 24-residue peptide derived from the third variable...