O-Acetylserine sulfhydrylase (OASS) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme which catalyzes the final step in the biosynthesis of L-cysteine in Salmonella, viz., the conversion of O-acetyl-L-serine (OAS) and sulfide to L-cysteine and acetate. UV-visible spectra of OASS exhibit absorbance maxima at 280 and 412 nm with pH-independent extinction coefficients over the range 5.5-10.8. Addition of OAS to enzyme results in a shift in the absorbance maximum from 412 to 470 nm, indicating the formation of an alpha-aminoacrylate Schiff base intermediate [Cook, P. F., & Wedding, R. T. (1976) J. Biol. Chem. 251, 2023]. The spectrum of the intermediate is also pH independent from 5.5 to 9.2. The observed changes in absorbance at 470 nm at different concentrations of OAS were used to calculate a Kd of 3 microM for OAS at pH 6.9. As the pH decreases, the Kd increases an order of magnitude per pH unit. The 31P NMR signal of the bound PLP has a pH-independent chemical shift of 5.2 ppm in the presence and absence of OAS. These results indicate that the phosphate group is present as the dianion possibly salt-bridged to positively charged groups of the protein. In agreement with this, the resonance at 5.2 ppm has a line width of 20.5 Hz, suggesting that the cofactor is tightly bound to the protein. The sulfhydrylase was also shown to catalyze an OAS deacetylase activity in which OAS is degraded to pyruvate, ammonia, and acetate. The activity was detected by a time-dependent disappearance of the 470-nm absorbance reflecting the alpha-aminoacrylate intermediate. The rate of disappearance of the intermediate was measured at pH values from 7 to 9.5 using equal concentrations of OAS and OASS. The rate constant for disappearance of the intermediate decreases below a pK of 8.1 +/- 0.1, reflecting the deprotonation of the active-site lysine that originally formed the Schiff base with PLP in free enzyme. A possible mechanism for the deacetylase activity is presented where the lysine displaces alpha-aminoacrylate which decomposes to pyruvate and ammonia.
[Question from NMRWiki Q&A forum] bulk water relaxation dependence on temperature
bulk water relaxation dependence on temperature
Is liquid water's relaxation rate strongly dependent on temperature, and does anyone have a link to a good online article with the dependency equation?Thanks!
Check if somebody has answered this question on NMRWiki QA forum
nmrlearner
News from other NMR forums
0
12-23-2011 10:21 AM
[NMR paper] Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR
Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation.
Related Articles Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation.
J Magn Reson. 2005 May;174(1):43-53
Authors: Chang SL, Tjandra N
The NMR spin-lattice relaxation rate (R1) and the rotating-frame spin-lattice relaxation rate (R1rho) of amide 15N and carbonyl 13C (13C') of the uniformly 13C- and 15N-labeled ubiquitin were measured at different temperatures and field strengths to investigate the...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] A protein backbone psi and phi angle dependence of 2J(N(i),C alpha(i-1)): the new NMR
A protein backbone psi and phi angle dependence of 2J(N(i),C alpha(i-1)): the new NMR experiment and quantum chemical calculations.
Related Articles A protein backbone psi and phi angle dependence of 2J(N(i),C alpha(i-1)): the new NMR experiment and quantum chemical calculations.
J Biomol NMR. 2005 Feb;31(2):87-95
Authors: Ko?mi?ski W, Zhukov I, Pecul M, Sadlej J
A new pulse sequence exploiting double- and zero-quantum evolution of two-spin 15N-13C' coherence is proposed for the accurate measurements of 2J(N(i),C alpha(i-1)) coupling...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] Temperature dependence of NMR order parameters and protein dynamics.
Temperature dependence of NMR order parameters and protein dynamics.
Related Articles Temperature dependence of NMR order parameters and protein dynamics.
J Am Chem Soc. 2003 Sep 17;125(37):11158-9
Authors: Massi F, Palmer AG
The helical subdomain, HP36, of the F-actin-binding headpiece domain of chicken villin, is the smallest naturally occurring polypeptide that folds to a thermostable compact structure. Unconstrained molecular dynamics simulations and constrained molecular dynamics simulations using umbrella sampling are used to study the...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] Time dependence of aggregation in crystallizing lysozyme solutions probed using NMR s
Time dependence of aggregation in crystallizing lysozyme solutions probed using NMR self-diffusion measurements.
Related Articles Time dependence of aggregation in crystallizing lysozyme solutions probed using NMR self-diffusion measurements.
Biophys J. 2001 Mar;80(3):1585-90
Authors: Price WS, Tsuchiya F, Arata Y
The time dependence of aggregation in supersaturated lysozyme solutions was studied using pulsed-gradient spin-echo NMR diffusion measurements as a function of lysozyme concentration at pH 6.0 and 298 K in the presence of 0.5 M NaCl....
nmrlearner
Journal club
0
11-19-2010 08:32 PM
Conformational dependence of 13C shielding and coupling constants for methionine
Abstract Methionine residues fulfill a broad range of roles in protein function related to conformational plasticity, ligand binding, and sensing/mediating the effects of oxidative stress. A high degree of internal mobility, intrinsic detection sensitivity of the methyl group, and low copy number have made methionine labeling a popular approach for NMR investigation of selectively labeled protein macromolecules. However, selective labeling approaches are subject to more limited information content. In order to optimize the information available from such studies, we have performed DFT...
nmrlearner
Journal club
0
08-25-2010 03:51 PM
[NMR paper] Defining long range order in NMR structure determination from the dependence of heter
Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy.
Related Articles Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy.
Nat Struct Biol. 1997 Jun;4(6):443-9
Authors: Tjandra N, Garrett DS, Gronenborn AM, Bax A, Clore GM
Structure determination by NMR presently relies on short range restraints between atoms in close spatial proximity, principally in the...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Defining long range order in NMR structure determination from the dependence of heter
Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy.
Related Articles Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy.
Nat Struct Biol. 1997 Jun;4(6):443-9
Authors: Tjandra N, Garrett DS, Gronenborn AM, Bax A, Clore GM
Structure determination by NMR presently relies on short range restraints between atoms in close spatial proximity, principally in the...