[NMR paper] Perspectives for sensitivity enhancement in proton-detected solid-state NMR of highly deuterated proteins by preserving water magnetization.
Related ArticlesPerspectives for sensitivity enhancement in proton-detected solid-state NMR of highly deuterated proteins by preserving water magnetization.
J Biomol NMR. 2015 Jan 30;
Authors: Chevelkov V, Xiang S, Giller K, Becker S, Lange A, Reif B
Abstract
In this work, we show how the water flip-back approach that is widely employed in solution-state NMR can be adapted to proton-detected MAS solid-state NMR of highly deuterated proteins. The scheme allows to enhance the sensitivity of the experiment by decreasing the recovery time of the proton longitudinal magnetization. The method relies on polarization transfer from non-saturated water to the protein during the inter-scan delay.
PMID: 25634300 [PubMed - as supplied by publisher]
Perspectives for sensitivity enhancement in proton-detected solid-state NMR of highly deuterated proteins by preserving water magnetization
Perspectives for sensitivity enhancement in proton-detected solid-state NMR of highly deuterated proteins by preserving water magnetization
Abstract
In this work, we show how the water flip-back approach that is widely employed in solution-state NMR can be adapted to proton-detected MAS solid-state NMR of highly deuterated proteins. The scheme allows to enhance the sensitivity of the experiment by decreasing the recovery time of the proton longitudinal magnetization. The method relies on polarization transfer from non-saturated water to the protein...
nmrlearner
Journal club
0
01-30-2015 12:15 PM
[NMR paper] Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins.
Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins.
Related Articles Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins.
J Magn Reson. 2014 Mar 4;242C:180-188
Authors: Chevelkov V, Habenstein B, Loquet A, Giller K, Becker S, Lange A
Abstract
Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system...
nmrlearner
Journal club
0
03-29-2014 01:00 PM
Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins
Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins
Publication date: Available online 4 March 2014
Source:Journal of Magnetic Resonance</br>
Author(s): Veniamin Chevelkov , Birgit Habenstein , Antoine Loquet , Karin Giller , Stefan Becker , Adam Lange</br>
Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained...
nmrlearner
Journal club
0
03-04-2014 06:37 PM
[NMR paper] Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins.
Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins.
Related Articles Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins.
Prog Nucl Magn Reson Spectrosc. 2013 Nov;75:50-68
Authors: Gopinath T, Mote KR, Veglia G
Abstract
Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS)...
nmrlearner
Journal club
0
10-29-2013 08:21 PM
Sensitivity and Resolution Enhancement of Oriented Solid-State NMR: Application to Membrane Proteins
Sensitivity and Resolution Enhancement of Oriented Solid-State NMR: Application to Membrane Proteins
Publication date: Available online 12 August 2013
Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br>
Author(s): T. Gopinath , Kaustubh R. Mote , Gianluigi Veglia</br>
Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS) techniques, O-ssNMR spectroscopy requires membrane protein...
nmrlearner
Journal club
0
08-13-2013 04:09 AM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 20;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner
Journal club
0
04-22-2011 02:00 PM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 14;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner
Journal club
0
04-16-2011 12:29 PM
High Resolution 1H Detected 1H,13C Correlation Spectra in MAS Solid-State NMR using Deuterated Proteins with Selective 1H,2H Isotopic Labeling of Methyl Groups
High Resolution <SUP>1</SUP>H Detected <SUP>1</SUP>H,<SUP>13</SUP>C Correlation Spectra in MAS Solid-State NMR using Deuterated Proteins with Selective <SUP>1</SUP>H,<SUP>2</SUP>H Isotopic Labeling of Methyl Groups
Vipin Agarwal, Anne Diehl, Nikolai Skrynnikov, and Bernd Reif
J. Am. Chem. Soc.; 2006; 128(39) pp 12620 - 12621;
Abstract:
MAS solid-state NMR experiments applied to biological solids are still hampered by low sensitivity and resolution. In this work, we employ a deuteration scheme in which individual methyl groups are selectively protonated. This labeling scheme...