Related ArticlesPerspectives in Enzymology of Membrane Proteins by Solid-State NMR.
Acc Chem Res. 2013 Jun 7;
Authors: Ullrich SJ, Glaubitz C
Abstract
Membrane proteins catalyze reactions at the cell membrane and facilitate thetransport of molecules or signals across the membrane. Recently researchers have made great progress in understanding the structural biology of membrane proteins, mainly based on X-ray crystallography. In addition, the application of complementary spectroscopic techniques has allowed researchers to develop a functional understanding of these proteins. Solid-state NMR has become an indispensable tool for the structure-function analysis of insoluble proteins and protein complexes. It offers the possibility of investigating membrane proteins directly in their environment, which provides essential information about the intrinsic coupling of protein structure and functional dynamics within the lipid bilayer. However, to date, researchers have hardly explored the enzymology of mem-brane proteins. In this Account, we review the perspectives for investigating membrane-bound enzymes by solid-state NMR. Understanding enzyme mechanisms requires access to kinetic parameters, structural analysis of the catalytic center, knowledge of the 3D structure and methods to follow the structural dynamics of the enzyme during the catalytic cycle. In principle, solid-state NMR can address all of these issues. Researchers can characterize the enzyme kinetics by observing substrate turnover within the membrane or at the membrane interphase in a time-resolved fashion as shown for diacylglycerol kinase. Solid-state NMR has also provided a mechanistic understanding of soluble enzymes including triosephosphate isomerase (TIM) and different metal-binding proteins, which demonstrates a promising perspective also for membrane proteins. The increasing availability of high magnetic fields and the development of new experimental schemes and computational protocols have made it easier to determine 3D structure using solid-state NMR. Dynamic nuclear polarization, a key technique to boost sensitivity of solid-state NMR at low temperatures, can help with the analysis of thermally trapped catalytic intermediates, while methods to improve signal-to-noise per time unit enable the real-time measurement of kinetics of conformational changes during the catalytic cycle.
PMID: 23745719 [PubMed - as supplied by publisher]
An ensemble dynamics approach to decipher solid-state NMR observables of membrane proteins
An ensemble dynamics approach to decipher solid-state NMR observables of membrane proteins
February 2012
Publication year: 2012
Source:Biochimica et Biophysica Acta (BBA) - Biomembranes, Volume 1818, Issue 2</br>
</br>
Solid-state NMR (SSNMR) is an invaluable tool for determining orientations of membrane proteins and peptides in lipid bilayers. Such orientational descriptions provide essential information about membrane protein functions. However, when a semi-static single conformer model is used to interpret various SSNMR observables, important dynamics information can...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 20;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner
Journal club
0
04-22-2011 02:00 PM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 14;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner
Journal club
0
04-16-2011 12:29 PM
Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR.
Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR.
Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR.
Protein Sci. 2011 Feb 22;
Authors: Hong M, Su Y
Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the...
nmrlearner
Journal club
0
02-24-2011 11:04 AM
[NMR paper] How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
Related Articles How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
Chembiochem. 2005 Sep;6(9):1693-700
Authors: Lorch M, Faham S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C
Several studies have demonstrated that it is viable to use microcrystalline preparations of water-soluble proteins as...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Site-directed 13C solid-state NMR studies on membrane proteins: strategy and goals to
Site-directed 13C solid-state NMR studies on membrane proteins: strategy and goals toward revealing conformation and dynamics as illustrated for bacteriorhodopsin labeled with amino acid residues.
Related Articles Site-directed 13C solid-state NMR studies on membrane proteins: strategy and goals toward revealing conformation and dynamics as illustrated for bacteriorhodopsin labeled with amino acid residues.
Magn Reson Chem. 2004 Feb;42(2):218-30
Authors: Saitô H, Mikami J, Yamaguchi S, Tanio M, Kira A, Arakawa T, Yamamoto K, Tuzi S
We have so...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] Solid-state NMR spectroscopy applied to membrane proteins.
Solid-state NMR spectroscopy applied to membrane proteins.
Related Articles Solid-state NMR spectroscopy applied to membrane proteins.
Curr Opin Struct Biol. 2000 Oct;10(5):593-600
Authors: de Groot HJ
One major remaining problem in structural biology is to elucidate the structure and mechanism of function of membrane proteins. On the basis of preliminary information from genome projects, it is now estimated that up to 50,000 different membrane proteins may exist in the human being and that virtually every life process proceeds, sooner or...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
Solid State NMR of membrane peptides and proteins
Solid State NMR of membrane peptides and proteins
Lecture notes on "Solid State NMR of membrane peptides and proteins" by Dr. SK Straus from Univ. of British Columbia
More...